

APOLLO FABRICATION GROUP

Detailed Site Investigation

2-20 Telegraph Road, Young NSW

Document Control

Report Title: Detailed Site Investigation.

Report No: E24959.E02_Rev0

Co	ppies	Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Mr. Caleb Jackson Apollo Fabrication Group PO Box 1539, Young NSW	
2	Original (Saved to Digital Archives) (Z:\07 - Projects\E24959_Apollo Fabrication_Young_PSI_DSI_EI\05_Deliverables\Work in Progress\E24959.E02_Rev0_JT.docx)	EI Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author	Technical Reviewer	
Author	Technical Reviewer	

Linda Xiao Civil / Envi	ronmental Engineer	Greg Brickle Principal Environmental Scientist		
Revision	Details	Date	Amended By	
0	Original	26 March 2021	-	

© 2021 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

			Page I	Number
EXI	ECUT	IVE SU	MMARY	1
1.	INTF	RODUCT	TION	1
	1.1	Backgro	ound and Purpose	1
	1.2	Propose	ed Development	1
	1.3	Regulat	ory Framework	1
	1.4	Project	Objectives	2
	1.5	Scope of	of Works	2
		1.5.1 1.5.2	Desktop Study Field Work & Laboratory Analysis	2 3
2.	SITE	DESCR	RIPTION	4
	2.1	Property	y Identification, Location, and Physical Setting	4
	2.2	Local La	and Use	4
	2.3	Regiona	al Setting	5
	2.4	Site Wa	lkover Inspection	6
3.	PRE	vious i	NVESTIGATIONS	8
4.	SITE	HISTO	RY AND SEARCHES	9
	4.1	Historica	al Aerial Review	9
	4.2	Council	Information	11
	4.3	EPA On	line Records	11
		4.3.1	Contaminated Land – Record of Notices under Section 58 of CLM A	Act
		(1997)	11 List of NSW contaminated sites notified to EPA	12
			POEO Public Register	12
	4.4	PFAS A	ssessment	12
		4.4.1	Preliminary PFAS Screen	12
		4.4.2	Emerging Chemicals	13
5.	CON	ICEPTU	AL SITE MODEL	15
	5.1	Contam	ination Sources	15
	5.2	Potentia	al Contaminants	15
	5.3	Data Ga	aps	16
6.	SAN	IPLE, Al	NALYSIS & QUALITY PLAN (SAQP)	18
	6.1	Data Qu	uality Objective (DQO)	18
	6.2	Data Qu	uality Indicators	22
7.	ASS	ESSME	NT METHODOLOGY	23
	7.1	Samplin	ng Rationale	23
	7.2	Investig	ation Constraints	23

		7.3 7.4	Assessme Soil Invest		23 24
	_				
	8.	DATA	A QUALIT	Y ASSESSMENT	26
	9.	RES	JLTS		28
		9.1	Soil Field I	Results	28
				Subsurface Conditions	28
			9.1.2	General Observations	28
		9.2	Laboratory	y Analytical Results	30
			9.2.1	Soil Analytical Results	30
	10.	SITE	CHARAC	CTERISATION	32
		10.1	Soil Chara	acterisation	32
		10.2	Review of	Conceptual Site Model	32
	11.	CON	CLUSION		34
	12.	REC	OMMEND	ATIONS	36
	13.	STAT	EMENT (OF LIMITATIONS	37
	REI	FEREI	NCES		38
	۸RI	RPFV	ATIONS		40
	701		Allono		70
Sch	nec	dule	of Ta	ables	
		le 2-1	Site Iden		4
		le 2-2	Local La		5 5
		le 2-3 le 4-1	Regional	y of local Business Activity along Telegraph Rd (outside of subject site)	9
		le 4-2		y of Aerial Photograph History	10
		le 4-3		ecision Tree	12
	Tab	le 4-4	Emerging	g or Controlled Chemicals	13
	Tab	le 5-1		nant Sources	15
		le 5-2		Contaminants and Impacted Media	15
		le 5-3	•	ual Site Model	17
		le 6-1 le 6-2		y of Project Data Quality Objectives ality Indicators	19 22
		le 0-2 le 7-1		Investigation Levels for Soil and Groundwater	23
		le 7-2	•	y of Soil Investigation Methodology	24
		le 8-1		Control Process	26
		le 9-1	-	sed Subsurface Profile	28
	Tab	le 9-2	Summar	y of Soil Analytical Results	30

Appendices

APPENDIX A - FIGURES

A.1 Site Location Plan

A.2 Site Layout Plan

APPENDIX B - TABLES

B.1 Soil results

B.2 QA/QC results

APPENDIX C - BOREHOLE LOGS

APPENDIX D - FIELD DATA SHEETS AND CALIBRATION CERTIFICATES

APPENDIX E - CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX F - LABORATORY ANALYTICAL REPORTS

APPENDIX G - LABORATORY QA/QC POLICIES AND DQOS

APPENDIX H - QA/QC ASSESSMENT

APPENDIX I - SITE PHOTOGRAPHS

APPENDIX J - LOTSEARCH

APPENDIX K - PROPOSED DEVELOPMENT PLAN

Executive Summary

Background

Mr. Caleb Jackson of Apollo Fabrication Group ('the Client') engaged EI Australia (EI) to conduct a Detailed Site Investigation for the property located at 2-20 Telegraph Road, Young NSW ('the site'). This assessment was conducted to assess the nature and degree of any potential onsite contamination associated with current and former users of the property, and to provide a conclusion about suitability of the site for proposed development. The investigation will form part of a Development Application package to Hilltop Council for site redevelopment.

This site is located approximately 1.7 km east of the Young Central Town Centre and is located within the Local Government Area of Hilltop Council (**Figure 1**). It is comprised of Lots 1-4 of DP736225; Lots 11-12 of DP1138027; Lots 1171, 1154 & 1199 of DP754611 and Lot 3 of DP374948; covering a total area of 3.4 ha, as depicted in **Figure 2**. The central-western portion of the site is currently occupied by a large commercial / industrial building with shipping container style offices in the south; the remaining areas of the site are free of all structures / have been cleared.

Based on the findings from this Detailed Site Investigation it was concluded that:

- The site was occupied by agricultural land and residential dwellings from at least 1944. A commercial / industrial warehouse building(s) was erected on the western section of the site in approximately 1985 and was upgraded to the current warehouse/factory configuration which was established by 2018. The eastern section of the site continued to be used for rural residential purposes, however, the dwelling were demolished,
- The conceptual site model identified the following potential sources of on-site contamination:
 - Fill soils of unknown origin and content;
 - Potential on-site use of pesticides across the agricultural portions of the site; Industrials processes in operation of the factory/warehouse including storage of paints, solvents and oils;
 - Oil leaks from equipment, abandoned vehicles and storage on-site
 - Weathering of galvanised materials including car bodies and scrap metal;; and
 - Fuel leakage from the underground storage tank on site.
- Analytical results for the representative soil samples collected from across the site were all below the adopted human health assessment criteria relevant for the proposed commercial / industrial development.
- Location BH123 situated adjacent to the underground storage tank did not report any petroleum hydrocarbons in shallow fill (0.1m BGL) or in deeper natural soil (0.6 m BGL). Indicating that the staining observed on the soil surface adjacent to the bowser was localised and has not significantly penetrated the sub-surface.
- Two samples (BH114_0.2 & BH120_0.2) collected from the south-western portion of the site, in the vicinity of the wrecked cars and stockpiled construction waste, were above the site specific ecological criterion for the concentration of zinc. The elevated zinc is attributed to the weathering of galvanised materials including car bodies and scrap metal. It is understood that the proposed development would involve the removal of all waste materials including the wrecked cars; therefore removing the source of contamination. It is also noted that the

proposed development does not include landscape or setback areas and so the risk to future ecological receptors is considered low.

- Zinc exceeded site specific ecological criterion (EILs), in shallow fill / top soil samples collected from the south-western portion of the site (locations BH114, BH120). The zinc concentration in the deeper underlying samples was low. The elevated zinc results were shallow and localised, and likely attributed to weathering of stockpiled scrap metal / construction waste or wrecked cars observed within these areas.
- Petroleum hydrocarbons (total recoverable hydrocarbons-F3, total recoverable hydrocarbons-F4) fractions were detected at relatively low concentration in fill soils and deeper natural soils immediately south of the warehouse building (BH120_2.0, BH121_0.2 & BH122_0.1), and sample BH120_2.0 exceeded the site specific ESLs, however the depth was 2 m below ground level. Given that large drums of oil and wrecked cars were stored in the general vicinity of these sampling locations, the TRH results may be attributed to historical leakage of fuels / oils. It is likely that historic storage / use of plant in this is responsible for the presence of remnant petroleum hydrocarbons at depth and is unlikely to present a risk.
- EI was informed by the client that a substantial amount of surface waste and scrap metal etc. has been removed from the site since site inspection by EI (see Photographs 11 & and 12, **Appendix I**).
- Zinc impact and petroleum hydrocarbon impact in soil were localised, and the sources on the ground surface had been removed. The ecological risk from zinc and petroleum hydrocarbon impact in soil was low and not unacceptable..

Based on the above findings and with due regard for the Statement of Limitations (**Section 13**), El considers that the land is suitable for the proposed development which is equivalent to a land use setting of commercial/industrial. Recommendations provided in **Section 12** should be implemented to aid the proposed redevelopment.

1. Introduction

1.1 Background and Purpose

Mr. Caleb Jackson of Apollo Fabrication Group ('the Client') engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) at the property with street address 2-20 Telegraph Road, Young NSW ('the site').

This DSI involved two phases of work as follows:

- A preliminary desktop assessment of the nature and degree of any potential onsite contamination associated with current and former uses of the property; and
- A detailed intrusive investigation involving the collection of soil samples followed by laboratory analysis for relevant contaminants of potential concern.

It is understood that the DSI report will form part of a Development Application package to Hilltop Council for site redevelopment.

This site is located approximately 1.7 km east of the Young Central Town Centre and is located within the Local Government Area of Hilltop Council (**Figure 1**). It is comprised of Lots 1-4 of DP736225; Lots 11-12 of DP1138027; Lots 1171, 1154 & 1199 of DP754611 and Lot 3 of DP374948; covering a total area of 3.4 ha, as depicted in **Figure 2**.

At the time of inspection, the site was occupied by a total of three main structures, as follows:

- The central-western portion of the site was occupied by a large commercial / industrial warehouse building used as an architectural steel manufacturer. The Building comprises metal clad (zinc coated steel) walls and roof with concrete paved floor;
- Immediately south of the warehouse building was a one level, office block comprised of multiple shipping containers; and
- Immediately west of warehouse was a single level residential dwelling, comprised of fibre cement walls and a corrugated tin roof.

1.2 Proposed Development

Based on the proposed development plans (Unique CAD Experience, ref: 1012, A0.1, dated 28 September 2020, **Appendix K**) provided by the client, EI understands that the site development involves demolition of all structures onsite except for the large commercial / industrial warehouse building located in the central-western portion of the site and the office block located immediately south of the warehouse building, followed by construction of two new workshop buildings with office block and addition to the existing commercial / industrial warehouse building. The footprints of proposed development are shown on **Figure 2**.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this report:

- NSW Environmental Planning and Assessment Act (EP&A) 1979;
- NSW Protection of the Environment Operation (POEO) Act 1997;
- NSW Contaminated Land Management Act 1997;
- EPA (1995) Sampling Design Guidelines;

- SEPP 55 (1998) State Environment Planning Policy 55 The Remediation of Land;
- NSW Work Health and Safety Act 2011;
- Hilltop Local Environmental Plan 2012;
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination)
 Measure 1999 (Amendment 2013), in particular Schedule B(1) Guideline on Investigation
 Levels for Soil and Groundwater and Schedule B(2) Guideline on Site Characterisation;
- EPA (2015) Contaminated Land Management: Guidelines on the Duty to Report Contamination;
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme;
 and
- EPA (2020) Consultants reporting on contaminated land guidelines.

1.4 Project Objectives

The primary objectives of this DSI are to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources (desktop study);
- To investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of the contaminated media (i.e. soils, soil vapour and/or groundwater).
- Provide a conclusion regarding the suitability of the site for the proposed development.

1.5 Scope of Works

In accordance with EI fee proposal P18825.1 (20 November 2020), the following scope of works was adopted:

1.5.1 Desktop Study

- A review of relevant hydrogeological and soil landscape maps for the project area;
- Review of previous environmental reports (where available);
- Detailed site walkover inspection;
- Search of historical aerial photographs archived at the NSW Department of Land and Property Information in order to review previous site use and the historical sequence of land development onsite and in the neighbouring area;
- Site history survey involving a detailed search of Council information relating to operational site history;
- A land titles search, also conducted through NSW Land and Property Information;
- Review of existing underground services on site; and
- A search through the Land Information records archived at the NSW Environment, Energy and Science Group (formerly the Office of Environment and Heritage), within the Dept. of Planning, Industry and Environment, to confirm that there are no statutory notices current on the site under the Contaminated Land Management Act (1997).

1.5.2 Field Work & Laboratory Analysis

- Preparation of a Work Health, Environment and Safety Plan (WHSEP);
- A review of existing underground services on site, with the use of 'Dial Before You Dig' (DBYD);
- A detailed site walkover inspection;
- Soil sampling from 23, mechanically-drilled boreholes distributed across accessible areas of the Site;
- Multiple level soil sampling within fill and natural soils; and
- Laboratory analysis of selected soil samples for relevant contaminants of potential concern, as determined from the site history survey and field observations during the investigation programme.

2. Site Description

2.1 Property Identification, Location, and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Table 2-1 Site Identification

Attribute	Description
Street Address	2-20 Telegraph Road, Young NSW
Location Description	The site is located approx. 1.7 km east of the Young town centre and is bound by Telegraph Road (north), residential lots (east and west), and Victoria Creek (south).
Site Coordinates	North-east corner of site (GDA2020-MGA56): Easting: 69074.194 Northing: 6192746.909 (Source: http://maps.six.nsw.gov.au)
Site Area	3.4 ha (http://maps.six.nsw.gov.au)
Lot and Deposited Plan (DP)	Lots 1-4 of DP736225; Lots 11-12 of DP1138027; Lots 1171, 1154 & 1199 of DP754611; and Lot 3 of DP374948
State Survey Marks	One State Survey Mark (SSM) and two Permanent Mark (PM) are situated in close proximity (<500m) of the site: PM152358 located on Whiteman Avenue; PM65857 located on Whiteman Avenue; and SS39765 located on Whiteman Avenue. (Source: http://maps.six.nsw.gov.au)
Local Government Authority	Hilltop Council
Parish	St. Marys
County	Monteagle
Current Zoning	RU4 – Rural zone. (Hilltop Local Environment Plan 2012)

2.2 Local Land Use

The site is situated within an area of low density residential, agricultural and commercial land uses, as described in **Table 2-2**. The potential local receptors within close proximity to the site are also identified.

Table 2-2 Local Land Use

Direction Relative to Site	Land Use Description
North	Telegraph Road followed by a recreational horse training facility.
South	Victoria Creek followed by an agricultural / residential lot.
East	Low density residential
West	Low density residential followed by Whiteman Avenue.

2.3 Regional Setting

Local topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Table 2-3 Regional Setting

Attribute	Description
Topography	The site comprised gentle undulating rises with a relatively steep escarpment along the south of the site, toward Vitoria Creek.
	Regional topography consists of undulating low hills with slopes from 3-5% on waxing hillslopes and foot slopes (Eddie, 2000).
Site Drainage	Consistent with the general slope of the site, stormwater is assumed to flow southward, towards Victoria Creek, which runs parallel to the southern boundary of the site.
Regional Geology	Eddie (2000) indicated the site to be underlain by the Silurian Young Formation granodiorite, often porphyritic in quartz, plagioclase and more rarely, potassium-feldspar and biotite. Colluvium and alluvium derived from these parent materials occur on lower slopes with much of the upper slopes influenced by parna.
Soil Landscapes	Eddie (2000) indicated the site is underlain by soils of the Young Erosional (yo) group comprising moderately deep to deep, well drained Halpic Mesotrophic Dermosols and Halpic Mesotrophic Kandosols on mid to upper slopes. Deep, imperfectly to poorly drained Bleached-Mottled Mesotrophic Yellow to Brown Chromosols on lower slopes.
Acid Sulfate Soil (ASS) Risk	With regards to the Hilltop LEP 2012, the site lies an area undefined with regards to the Acid Sulfate risk. Given the protracted distance from the marine transgression / regression depositional environment, the risk of ASS is considered low.
Nearest Surface Water Feature(s)	Victoria Creek lies at the southern boundary of the site. Victoria Creek flows into Burrangong Creek, approximately 2km west of the site.
Anticipated Groundwater Flow Direction	Groundwater was inferred to flow to the south, towards Victoria Creek.

2.4 Site Walkover Inspection

El staff inspected the site during intrusive investigations on 8-9 December 2020. The recorded observations are summarised below with a photographic log provided in **Appendix I**:

- The overall site was relatively level with an escarpment / steep drop at the rear southern part of the property, towards Victoria Creek
- The site consisted of two discrete portions, east and west, separated by a north-south easement running from Telegraph Road (Figure 2).
- The eastern portion consisted of a large paddock area and was former location of residential dwellings;
- The western portion consisted of a large factory/warehouse, a single residential dwelling immediately west of the factory/warehouse, gravel covered car parking area and stockpiled construction waste. The rear portion of the warehouse building(s) appears to have been built up / levelled, likely using soil materials from the lower lying areas at the south of the site.
- Adjacent east of the main factory/warehouse building was bare soil (former location of multiple residential dwellings) with traces of foreign materials observed on the soil surface (Photograph 2, Appendix I).
- During El's inspection, the low-lying, portion of the site, south west of the factory/warehouse
 was occupied by abandoned car bodies disassembled automotive engines, stockpiles of
 scrap metal and construction waste (Photographs 3 & 4, Appendix I).
- Note: El was informed by the client on 22 January 2021 that a substantial amount of rubbish and scrap metal etc. has been removed from the site since site inspection by El. Two photographs were provided by the client (Photographs 11 & 12, Appendix I), it appears that the south west portion was cleared of any abandoned car bodies disassembled automotive engines and construction waste.
- The large warehouse building with metal clad (zinc coated steel) walls and roof and concrete flooring. The concrete slab(s) were observed to be in good / new condition with no apparent cracking. Adjacent south of the warehouse stood a two level, shipping container style, office block (**Photograph 5, Appendix I**).
- Multiple, large oil drums (200L) were observed in the rear of the main warehouse building and in the southern portion of the site. No visual evidence of leaking was observed (Photograph 6, Appendix I).
- The eastern side of the warehouse building was used for the storage of paints and painting of metal products, with an enclosed spraying booth adjacent the southern access door. All paints were stored on pallets above a concrete slab observed in good / new condition with no obvious cracks observed. No significant spills or leaks of paints and solvents were observed (Photograph 7 & 8, Appendix I).

A single fuel pump was observed adjacent to the north-eastern roller door of the main warehouse building, with associate fill / dip points. Staining was observed on the compacted soil surface adjacent to the fuel pump. An approximate mark-up of the underground petroleum storage system (UPSS) footprint was provided by the onsite service locator. Anecdotal information provided by an employee of Apollo Fabrication Group, indicated that two underground storage tanks (USTs) were present comprising volumes of 10,000L and 500L respectively (Photograph 9, Appendix I), though the observed underground petroleum storage system (UPPS) infrastructure was associated with a single UST. The UST/bowser was used to fuel onsite mobile equipment.

3. Previous Investigations

El is unaware of any previous environmental investigations having been conducted at the subject site.

4. Site History and Searches

4.1 Lotsearch Report and Historical Aerial Review

An environmental risk and planning report for the site was received from Lotsearch Pty Ltd. This report, Lotsearch Reference LS016732 EP (dated 10 Dec 2020), is presented in full in **Appendix J**. It included historical business directories (covering the period 1950-1991) and searches of various environmental resources and plans archived by statutory authorities. A summary of the relevant (historical) information follows.

4.1.1 Historical Business Directories

Based on the available historical business Directories record from Lotsearch Report LS016732 EP (**Appendix J**), there is no available record subject to the site and any property within a radius of 150m of the site. However, there are several records related to Telegraph Road, summarized in **Table 4-1**.

Table 4-1 Summary of local Business Activity along Telegraph Rd (outside of subject site)

Business Activity	Premise	Year
Lawn Mower Sales & Service	Hamlyn J. Engineering; Telegraph Road, Young NSW	1991
Bricklayers	Johnson C.C; Telegraph Road, Young NSW	1991
Mixed Business	Dawe, J. L; Telegraph Road, Young NSW	1982
Motor Garage & Engineers & Service Station	Dawe, J. L; Telegraph Road, Young NSW	1982
Bricklayers	Johnson C.C; Telegraph Road, Young NSW	1982
Mixed Business	Dawe, J. L; Telegraph Road, Young NSW	1970
Motor Service Station – Petrol, Oil	Dawe, J. L; Telegraph Road, Young NSW	1970
Bricklayers	Johnson, S. G; Telegraph Road, Young NSW	1970
Carriers & Cartage Contractors	Miller, R. J; Telegraph Road, Young NSW	1970

Table 4-1 summarises local business activities for the street identified as Telegraph Road and not specifically the subject site. A review of the available historical aerial photographs indicated that any commercial activities having taken place on Telegraph Road have occurred outside of a 150m radius of the subject site.

The historical aerial photographs reviewed as part of this Detailed Site Investigation were the following:

 NSW Aerials 2018, 2013, 2006, 1997, 1994, 1989, 1985, 1978, 1969 and 1944 (Source from Lotsearch Reference LS016732 EP, dated 10 Dec 2020)

A summary of the information these aerial photographs is provided in **Table 4-2**.

Table 4-2 Summary of Aerial Photograph History

Table 4-2 Summ	nary of Aerial Photograph History	
Aerial Photograph	Site description based on historical aerial photographs	Land use
1944	The site appears mostly cleared with sparse tree coverage and two, low density residential dwellings. Majority of site appears agricultural in land-use. Surrounding land appears agricultural in use with a commercial / recreational horse racing track approximately 200m north of the subject site.	Residential / agricultural
1969	The subject site and surrounding land appears relatively unchanged from previous image. Three residential dwellings have been erected immediately east of the site.	Residential / agricultural
1978	The subject site and surrounding land appears relatively unchanged from previous image. Access road / driveway on western portion of site appears to have been paved. Discolouration / stress on vegetation apparent in the eastern portion of the site and in the low-lying area about the creek to the south of the site. Approximately six residential dwellings erected approximately 500m south-east of the site.	Residential / agricultural
1985	The western portion of the site appeared to be developed, grass has been cleared and two warehouse buildings have been erected. Discolouration / stress on vegetation no longer apparent on eastern / southern portion of the site. Two shed buildings erected in the vicinity of the Creek, south of the site.	Residential / agricultural / commercial
1989	Surrounding land and eastern portion of the site appear relatively unchanged from previous image. Commercial development continued on the western portion of the site. Soil clearing has continued and potential hardstand driveway area surrounding warehouse buildings (difficult to determine from the quality of the image).	Residential / agricultural / commercial
1994	Eastern portion of the site remains relatively unchanged. Exposed soils apparent across all of western portion of the site. Low density residential development continued along the road approximately 500m south of the site; and approximately 400m north-east of the site.	Residential / agricultural / commercial
1997	The western most warehouse buildings has been demolished and replace with a larger warehouse building in the western portion of the site. Large number of shipping containers, cars, trucks and trailers are scattered about the eastern portion of the site. The eastern portion of the site and surrounding land appear relatively unchanged.	Residential / agricultural / commercial
2006	Layout of the site appears unchanged, aggregate / gravels have been placed over exposed soils in the western portion of the site. Some of the shipping containers / trucks have been removed.	Residential / agricultural / commercial

Aerial Photograph	Site description based on historical aerial photographs	Land use
	Residential development continued in the area south of the site.	
2013	Concrete hardstand has been constructed in the area surrounding the warehouse buildings in the western portion of the site. The configuration of the warehouse buildings appear unchanged from previous image.	Residential / agricultural / commercial
	Surrounding land appears relatively unchanged from previous image.	
2018	The warehouse buildings have been altered, with a large roof / building encapsulating all previous warehouse buildings. The industrial structures appear in their present day configuration. Eastern portion of the site appears relatively unchanged from previous image.	Residential / agricultural / commercial
	Surrounding land appears relatively unchanged from previous image.	

In summary, review of historic aerial photography indicated that the site has been residential / agricultural since at least 1944 to date; with the western portion of the site developed into commercial / industrial from approximately 1985. The warehouse buildings constructed in 1985 was upgraded / replaced twice, with construction of the current warehouse configuration completed after 2013.

4.2 Council Information

An informal information request to access council information was submitted to Hilltop Council on 12 December 2020. El was informed by customer service officer from Hilltop council on 17 Dec 2020 that a formal information request needs to be sent due to the scope of search. A formal information request was then sent to council on 11 January 2021. No information had been received at the time of this report. Should any information come to light that may alter the outcome of this report, the report will be amended accordingly.

4.3 EPA Online Records

4.3.1 Contaminated Land – Record of Notices under Section 58 of CLM Act (1997)

An on-line search of the contaminated land public record of EPA Notices was conducted 17 December 2020. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Notices available to the public under Section 58 of the CLM Act;
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked:
- Site audit statements provided to the NSW EPA under section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by NSW EPA under section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (EHC Act).

The contaminated land record search found:

A total of four clean up notices and one Penalty notice was identified for the township of Young, however the registered address for each of the infringements were greater than 1km from the subject site. The clean up notices were not considered to be of concern for site management.

4.3.2 List of NSW contaminated sites notified to EPA

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was conducted on 17 December 2020. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the NSW EPA.

The search did not identify any notified properties within 500 m of the site.

4.3.3 POEO Public Register

A search of the Protection of the Environment Operations (POEO) Act public register was conducted on 4 December 2020. The public register contains records relating to environmental protection licences, applications, notices, audits, pollution studies, and waste reduction programmes. The search POEO register identified a total of 20 licences issued within the township of Young.

One POEO licence was identified in close proximity to the subject site. The licence is held by Ambos Pty Ltd (trading as Ambos Stockfeeds), located at 90 Telegraph Road, Young. The licence was issued on 17 December 2002 and pertains to 'general agricultural processing'. The licence has undergone a total of four variations and is classed by the NSW EPA as *Environmental Risk Level 1* which is considered "Low risk and a good environmental performer".

4.4 PFAS Assessment

4.4.1 Preliminary PFAS Screen

EPA (2017) requires that (per- and poly-fluoroalkyl substances) PFAS are considered when investigating land contamination. The probability of PFAS occurrence, which was based on considerations outlined in the *PFAS National Environmental Management Plan* (NEMP 2020), as well as the EnRisk (2016) decision tree, is reviewed in **Table 4-3.** In this instance, the potential for PFAS to be present on-site was low and subsequently PFAS sampling / analysis of soil and water was unwarranted.

Table 4-3 PFAS Decision Tree

Preliminary Screening	Probability of Occurrence ¹
Has an activity listed in NEMP (2020) ² as being associated with PFAS contamination occurred on-site? If so, list activity.	L
Has an activity listed in NEMP (2020) ² as being associated with PFAS contamination occurred up-gradient or adjacent to the site? If so, list activity.	L
Did fire training involving the use of suppressants occur on-site between 1970 and 2010?	L
Did fire training occur up-gradient or adjacent to the site between 1970 and 2010? ³	L
Have "fuel" fires ever occurred on-site between 1970 and 2010? (e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?)	L
Have PFAS been used in manufacturing or stored on-site? 4	L

Preliminary Screening	Probability of Occurrence ¹
Could PFAS have been imported to the site in fill materials from a site with an activity listed in NEMP (2020)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	L
Is the site or adjacent sites listed in the NSW EPA PFAS Investigation Program? 5	L
PFAS Screen Assessment Finding:	
If the probability is medium or high for any of the above questions, does the site analytical suite need to be optimised to include preliminary sampling and testing for PFAS in soil (incl. ASLP testing) and waters?	NO

Notes:

- Note 1 Probability: L low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale); M moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale).
- Note 2 Activities listed in Appendix B of the NEMP (2020).
- (https://www.oecd.org/env/ehs/risk-management/PFC_FINAL-Web.pdf)
- Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.
- Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard™ and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam.
- (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)
 Note 5 Refer to https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program.

Given that the manufacturing / industrial processes taking place on the site involve cutting / welding and painting of architectural steal and do not include items or activities listed in Appendix B of the NEMP (2020); the suite of analysis does not require modification to include PFAS.

4.4.2 Emerging Chemicals

The EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the Environmentally Hazardous Chemicals Act 1985 (EHC Act) to specifically control chemicals of concern and limit their potential impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues.

As with PFAS compounds, EI considered chemicals controlled by Chemical Control Orders (CCOs) and other potential emerging chemicals in this PSI, as outlined in **Table 4-4**.

Table 4-4 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Finding
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? ¹	No
Were organotin products (CCO, 1989) used or stored on site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	Possible (waste oil drums observed onsite)
Were scheduled chemical or wastes (CCO, 2004) used or stored ⁴	Possible (associated with steel fabrication)
Are other emerging chemicals suspected? 5	No
If a 'Yes' applies to any question above, the site sampling suite should be optimised to include specific sampling for	The suite of analysis includes contaminants associated with the above processes

Chemicals of Concern (CCO or emerging)	Finding	
the corresponding chemicals of concern in soil, air and water	including, but not limited to, PCBs, heavy metals and pesticides (OCP / OPP)	
Note 1 From burning of certain chemicals, smelting or chemical Note 2 From anti-fouling paints used or removed at boat and shi		
Note 3 From older transformer oils and electrical capacitors.	, ,	
Note 4 Twenty-four mostly organochlorine pesticides and indust	rial by-products.	

Note 5 Other chemicals considered as 'emerging' e.g. 1,4 dioxane (associated with some chlorinated VOCs).

5. Conceptual Site Model

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation, El developed a conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 Contamination Sources

Base on the history review and inspection, the primary contaminant sources at the site are outlined in **Table 5-1**.

Table 5-1 Contaminant Sources

Contaminant Source	Potential Impacts
Surface filling (expected beneath slabs and building)	A wide range of potential inorganic and organic chemicals, including asbestos.
Site wide use of pesticides	Potential residual impacts from historic use of pesticides.
Contamination from on-site sources	Potential groundwater and soil contamination from historic use as industrial land (vehicle / plant movement; storage of paints, solvents and oils; leaking of UPSS; storage of construction waste, scrap metal and abandoned cars; manufacturing processes; pesticide / herbicide use) including: heavy metals (HM), total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl-benzene and xylenes plus the semi-volatile PAH naphthalene (BTEXN), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), organophosphate pesticides (OPPs) / organochlorine pesticides (OCPs) and asbestos-containing materials (ACM).
Contamination from off-site sources	Potential groundwater contamination from spills / leaks associated with the use and storage of industrial chemicals; including metals, TRH, BTEX and PAH.

5.2 Potential Contaminants

Chemicals of potential concern (COPC) at the site, along with the potential media impacts, are outlined in **Table 5-2**. For definitions and abbreviations see glossary of abbreviations at the end of this report.

Table 5-2 Potential Contaminants and Impacted Media

Contaminant (COPC)	Soil Impacts	Air Quality Impacts	Groundwater Impacts
Priority metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn)	М	L	М
Total recoverable hydrocarbons (TRH)	M	L	M
VOCs, including chlorinated volatile organic compounds (cVOC) and BTEXN	M	L	М
PAHs , Carcinogenic PAHs (as B(a)P TEQ)	М	L	L

Contaminant (COPC)	Soil Impacts	Air Quality Impacts	Groundwater Impacts
Phenols	М	L	M
OCPs and OPPs	L	L	L
Polychlorinated biphenyls (PCB)	М	L	L
Asbestos	М	L	N/A
LNAPL or DNAPL	М	N/A	M
PFAS	L	L	L
Other COPCs	L	L	L

Notes:

L – low risk; M – medium/moderate risk; H – high risk N/A – not applicable

Potential contamination sources, exposure pathways and potential human and environmental receptors that were considered relevant for this DSI are summarised in **Table 5-3**.

5.3 Data Gaps

Groundwater conditions have not been assessed within the subject site however based on the findings of the CSM, the risk of impacts to groundwater is considered low and acceptable.

Table 5-3 Conceptual Site Model

Contamination Source	Impacted Media	Contaminants of Potential Concern	Transport Mechanism	Exposure Pathway	Potential Receptor
Historic pesticide application during former agricultural use. Industrial processes including storage of paints, solvents and / or oils. Leaking of UPSS. Storage of wrecked cars and scrap metal/construction	Soil	Hydrocarbons (TRH F1 soils during site redevelopment, future site	Ingestion Dermal contact Inhalation of dust particulates	Construction and maintenance workers Users of the site post redevelopment	
			Atmospheric dispersion from soil to outdoor and indoor air spaces.	Inhalation dust particulates	-
		TRH-F1 and TRH-F2, VOCs including BTEXN	Volatilisation of contamination from soil and diffusion to indoor air spaces.	Inhalation of vapours from impacted soil	-
	Groundwater	HMs, TRH, VOCs including BTEXN and PAHs	Interception of water table during excavation or piling. Volatilisation of contamination from groundwater to indoor or outdoor air spaces.	Dermal contact; Ingestion; Inhalation of vapours	Construction workers and future site occupants
			Migration of dissolved phase impacts in groundwater.	Biota uptake	Aquatic ecosystems – habitat associated with Victoria Creek immediately south of the site.

6. Sample, Analysis & Quality Plan (SAQP)

The SAQP ensures that the data collected during the investigations, is representative and provides a robust basis for site assessment decisions. The SAQP for this DSI included the following:

- Data quality objectives, including a summary of the objectives of the ASI;
- Investigation methodology, including a description of intended sampling points, the media to be sampled and details of COPCs to be analysed;
- Sampling procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.1 Data Quality Objective (DQO)

In accordance with the US EPA (2006) Data Quality Assessment and the EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this DSI is documented in **Table 6-1**.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps

Details

1. State the Problem

Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model

Characterisation of the site is required as part of a Development Application (DA) to Hilltop Council.

Historical information and site inspection identified the potential for contamination to be present in site soil, contributed by various potential sources listed in **Section 5.1**. In light of the information derived from the available site history information and site observations, a conceptual site model was developed (**Section 5**).

The western portion of the site was primarily residential / agricultural from at least 1944 until approximately 1985 when two commercial / industrial warehouses were constructed; this portion of the site has remained predominantly commercial / industrial until present day. The eastern portion comprised residential / agricultural use from at least 1944 until present day.

The proposed development is the construction of at least three new workshop buildings, one new office building with adjacent car parking on grade, two new commercial buildings of undetermined use and addition / modification to the south-western portion of the existing warehouse building.

The proposed development is equivalent to a generic NEPC (2013) land use setting of commercial/industrial.

2. Identify the Goal of the Study (Identify the decisions)

Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them Based on the objectives outlined in Section 1.4 the decisions that need to be made are:

- Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined?
- What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified?
- Do the levels of impact warrant further investigation, to enable the vertical and lateral extent of contamination to be delineated, and the risks to identified potential human and/or environmental receptors to be evaluated?
- Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary?

DQO Steps

Details

3. Identify Information Inputs (Identify inputs to decision)

Identify the information needed to support any decision and specify which inputs require new environmental measurements Inputs to the decision making process include:

- The proposed future land uses (and development concept, if available);
- Available site historical information;
- Previous investigations;
- Any areas of environmental concern, identified during the site inspection prior to intrusive investigations;
- National and NSW EPA guidelines endorsed under the Contaminated Land Management Act 1997;
- Soil and groundwater sampling and laboratory analysis for COPCs to verify the presence of onsite contamination and to evaluate
 the risks to potential sensitive receptors; and
- At the end of the investigation, a decision must be made regarding whether the soils and/or groundwater are suitable for the proposed development, or if additional investigation or remedial works are required to make the site suitable for the proposed use.

4. Define the Boundaries of the Study

Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision Lateral – The boundaries of the study are defined as the sites cadastral boundaries.

Vertical – From the existing ground level, fill and natural soils, and to (and including) underlying water-bearing zones.

Temporal – Results are valid on the day of data and sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.

5. Develop the Analytic Approach (Develop a decision rule)

To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions The decision rules for the investigation were:

- What are the characteristics of soil at the site? Soil boreholes will be advanced to natural, sampled and logged to characterise underlying conditions.
- What are the characteristics of groundwater at the site? The potential risk to groundwater by onsite potential contaminant sources was considered low. Furthermore, based on the COPCs and potential pathways, the risk of contaminants associated with groundwater, to future site occupants is considered low.
- Is the site contaminated by historic land use? Soil samples will be analysed for COPCs, with the data compared to relevant screening criteria.
- Is the site suitable for the proposed land use?
 If the concentrations of contaminants in the soil are below the relevant human health-based and ecological criteria for the intended land use, then the site will be deemed suitable for the proposed development.

DQO Steps

errors)

6. Specify Performance or Acceptance Criteria (Specify limits on decision

Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data

7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data)

Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs

Details

Specific limits for this project are to be in accordance with NEPC (2013), appropriate data quality indicators (DQIs) for assessing the useability of the data and EI standard procedures for field sampling and handling.

To assess the useability of the data, pre-determined DQIs for completeness, comparability, representativeness, precision and accuracy were adopted, as presented below in **Table 6-2**.

If any of the DQIs are not met, further assessment will be necessary to determine whether the non-conformance will significantly affect the useability of the data. Corrective actions may include requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of samples.

Site history indicates the potential for contamination to exist. To achieve the decision rules, the intrusive investigation included:

- Sampling of locations in a grid-based pattern across accessible parts of the site.
- An upper soil profile sample will be collected at each borehole location and tested for contaminants of potential concern, to assess the conditions of the fill / top soil layer, and impacts from agricultural activities. Further sampling would also be carried out at deeper soil layers. Samples will be selected based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) with consideration of subsurface stratigraphy.
- Review of the results will be undertaken to determine if further intrusive investigation (i.e. additional sampling) is warranted for the delineation of site contamination.

6.2 Data Quality Indicators

To ensure that the investigation data were of an acceptable quality, they were assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Appendix H**.

Table 6-2 Data Quality Indicators

QA/QC Measures (PARC)	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
	 Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or
	Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:
measure of the closeness of reported data to the "true" value	 Method blanks, which are analysed for the analytes targeted in the primary samples;
	 Matrix spike and matrix spike duplicate sample sets; and
	Laboratory control samples.
Representativeness – The confidence (expressed qualitatively) that data are	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness – A measure of the amount of useable data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
from a data collection activity	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and
	 Copies of all COC documentation are presented, reviewed and found to be properly completed.
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
each sampling and analytical event	In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.

7. Assessment Methodology

7.1 Sampling Rationale

With reference to the CSM described in **Section 5**, soil investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from 23 test-bore locations, distributed in a generally systematic pattern in accessible areas of the site. Though some locations were placed to target identified areas of concern:
 - Sample locations BH111-BH115 were targeted near stockpiles of scrap metal and abandoned vehicles,
 - Location BH123 was placed as close as practical (approx. 0.2 m) to the inferred location of the UST. Location BH101) was approximately 12m downgradient south of the UST.
 - Locations BH102-BH110 were placed in the eastern section within the footprint of former residential areas and the broader rural use area.
- The sample location density was approximately half that recommended for in EPA (1995) Sampling Design Guidelines for a 3.4 ha site. The sample location density was higher in the western portion where the factory/warehouse was located and there was a history of commercial/industrial use. The sampling density was considered satisfactory with respect to site history and proposed commercial/industrial use; and
- Laboratory analysis of representative soil samples for the identified contaminants of potential concern (COPC).

7.2 Investigation Constraints

All test bores drilled during the investigation phase achieved the planned scope described in **Section 1.5**.

7.3 Assessment Criteria

The assessment criteria proposed for this project are outlined in **Table 7-1**. These were selected from available published guidelines that are endorsed by national and/or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Table 7-1 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPC (2013) Soil HILs, HSLs, EILs / ESLs and Management Limits for TRHs	Soil Health-based Investigation Levels (HILs) Site-wide soils: NEPC (2013) Schedule B1, HIL-D for Commercial / Industrial site. Soil Health-based Screening Levels (HSLs) Site-wide basement footprint: NEPC (2013) Schedule B1, HSL-D for Commercial / Industrial site.

Asbestos HSLs

The NEPC (2013) HSLs (WADoH (2009)) for asbestos were referred to, noting that soil samples were screened for asbestos on a presence/absence basis.

Ecological Investigation / Screening Levels (EILs / ESLs)

<u>Setback / Landscaping areas</u>: NEPC (2013) Schedule B(5)c, Soil quality guidelines for arsenic, chromium III, copper, DDT, lead, naphthalene, nickel and zinc. The derived EIL criteria were based on the addition of the most conservative Added Contaminant Limit (ACL) and the Ambient Background Concentration (ACL) for aged soils.

For selected petroleum hydrocarbons and TRH fractions, the NEPC (2013) ESLs for protection of terrestrial ecosystems on residential sites were adopted.

The EIL for benzo(a)pyrene was sourced from CRC Care (2017) Technical Report No. 39 *Risk-based management and remediation guidance for benzo(a)pyrene*.

EIL and ESLs apply to the top 2m of soil (the root zone).

Management Limits for Petroleum Hydrocarbons

Where the HSLs and ESLs for petroleum hydrocarbons were exceeded, samples were also assessed against the NEPC (2013) *Management Limits* for the TRH fractions F1 – F4, to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards and adverse effects on buried infrastructure.

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs). SILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 9**.

7.4 Soil Investigation

The soil investigation works conducted at the site are described in **Table 7-2**. Test bore locations are illustrated in **Figure 2**.

Table 7-2 Summary of Soil Investigation Methodology

Activity/Item	Details
Fieldwork	The borehole drilling works were conducted on 8-9 December 2020. All test bores were able to be completed to the target depth or refusal within the natural soil profile.
Drilling Method	All test bores were advanced using a ute-mounted, mechanical solid flight auger drilling rig to a maximum depth of 4.0 mBGL.
Soil Logging Soil types encountered during drilling were classified in the field f characteristics and evaluated on a qualitative basis for odour and contamination. Soil classifications and descriptions were based of Standard (AS) 1726:2017. Bore logs are presented in Appendix	

Activity/Item	Details
Field Observations (including visual and olfactory signs of potential contamination)	A summary of field observations is provided, as follows: Top soil occurred from approximately 0.0 - 0.6 mBGL; Localised fill occurred from approximately 0.0 - 0.9; Reworked natural soils / fill occurred from approximately 0.0 - 0.3; Natural alluvial Gravelly SAND occurred from approximately 0.2 - 2.7+ mBGL; Natural residual Silty CLAY occurred from approximately 0.5 - 1.1+ mBGL. No water seepage was observed during drilling (maximum depth 4 m BGL)
Soil Sampling	 Samples were collected by dry grab method (unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars For each sample, a small aliquot was placed into a zip-lock bag for in-field screening of VOCs using a portable Photo-ionisation Detector (PID). For each fill sample, an aliquot was placed in a zip-lock bag for asbestos analysis.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Decontamination Procedures	Dedicated gloves were used for the collection of each sample. Sampling equipment (i.e. trowel and shovel) was decontaminated between uses by washing in a solution of potable water and Decon 90, and then rinsed with potable water.
Sample Preservation and Transport	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory (SGS Australia (SGS). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to El for confirmation purposes (Appendix E).
Quality Control and Laboratory Analysis	Soil samples were analysed by SGS for the identified COPCs. QA/QC testing comprised a rinsate blank, trip spike / blank samples and intra-laboratory (blind field) duplicates tested by SGS, as well as an inter-laboratory (split field) duplicate tested by Envirolab (secondary laboratory). All corresponding laboratory analytical reports are presented in Appendix F .

8. Data Quality Assessment

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if they meet the objectives of the project (US EPA, 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements.

The data quality assessment for this DSI included a review of analytical procedures to confirm compliance with established laboratory protocols and an evaluation of the accuracy and precision of the analytical data from a range of quality control measurements, as summarised in **Table 8-1**.

Table 8-1 Quality Control Process

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
Preliminaries	Data Quality Objectives established	Yes	See DQO/DQI
Field work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes, calibration forms	Yes	See Appendices C / D
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See Section 7.2 .
	All media sampled and duplicates collected	Yes	Soil vapour not required
	Use of approved and appropriate sampling methods (soil, groundwater, air quality)	Yes	See methodology
	Selection of soil samples according to field PID readings (where VOCs are present)	Yes	See methodology
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See methodology
	Appropriate Rinsate, Field and Trip Blanks taken	Yes	See methodology
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See laboratory reports
Laboratory	Sample holding times within acceptable limits	Yes	See laboratory QA
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See laboratory report
	LOR/PQL low enough to meet adopted criteria	Yes	See laboratory appendix
	Laboratory blanks	Yes	See laboratory QA/QC

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
	Laboratory duplicates	Yes	See laboratory QA/QC
	Matrix spike/matrix spike duplicates (MS/MSDs)	Yes	See laboratory QA/QC
	Surrogates (or System Monitoring Compounds)	Yes	See laboratory QA/QC
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See QA Tables Appendix H
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	See Appendix F and Appendix H
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See document control

The findings of the data quality assessment are discussed in detail in **Appendix H**. QA/QC policies and DQOs are presented in **Appendix G**.

On the basis of the analytical data validation procedure employed, the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

9. Results

9.1 Soil Field Results

9.1.1 Subsurface Conditions

The general site lithology encountered during the drilling of the boreholes was observed as a shallow layer of top soil and localised fill, overlying natural sandy clay, silty clay and sandy silt, then sand. No water seepage was observed. More detailed description is summarised in **Table 9-1** and borehole logs from the works are presented in **Appendix C**.

Table 9-1 Generalised Subsurface Profile

Layer	Description	Approx. depth to top & bottom of layer (mBGL)
Fill / Topsoil	Clayey SAND (SC): coarse grained, angular, poorly graded, dark brown with trace fine grained, angular gravels, moist, no odour.	0.0-0.5
	SILT (ML): low plasticity, light brown with trace sub-angular gravels, dry, no odour.	0.0-0.6
Re-worked Natural / Fill	Gravelly SAND (SP): coarse grained, angular, poorly graded, dark red, dry, no odour.	0.0-0.3
Natural	Sandy CLAY (CL): low plasticity, dark red, with trace fine grained, sub-angular gravels moist, no odour	0.1-0.9+
	Silty CLAY (CL): medium to low plasticity, brown, with some fine grained, sub-angular sand and trace angular gravels, moisture < plasticity limit, no odour.	0.5-1.1+
	Sandy SILT (ML): low plasticity, light brown, with sub-angular sand, dry, no odour.	0.4-1.3+
	Gravelly SAND (SP): coarse grained, angular, poorly graded, dark orange, with sub-rounded gravels, moist, no odour.	1.8+
Bedrock	Not encountered+	-

Notes

9.1.2 General Observations

Soil samples were obtained from the test bores at various depths ranging between 0.0-2.0 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual

⁺ Termination depth of borehole

signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, and charcoal).

The following observations were made in the subsurface during soil sampling:

- No odour or staining or other evidence of chemical contamination was observed in soil samples
- No foreign materials were observed.
- There was no evidence of asbestos containing material (ACM).

9.2 Laboratory Analytical Results

9.2.1 Soil Analytical Results

A summary of the laboratory analytical results for the tested soil samples is presented in **Table 9-2**. A more detailed tabulation with concentrations for individual samples alongside the adopted SILs is presented in **Table B.1** in **Appendix B**.

Table 9-2 Summary of Soil Analytical Results

Hydrocarbons 31 F1 <25 <25 None 31 F2 <25 39 None 31 F3 <90 1900 ESLs BH120_0.2 31 F4 <120 480 None 31 Benzene <0.1 <0.1 None 31 Toluene <0.1 <0.1 None 31 Ethyl benzene <0.1 <0.1 None 31 Total xylenes <0.3 <0.3 None
31 F2 <25
31 F3 <90 1900 ESLs BH120_0.2 31 F4 <120
BH120_0.2 31 F4 <120
31 Benzene <0.1 <0.1 None 31 Toluene <0.1
31 Toluene <0.1 <0.1 None 31 Ethyl benzene <0.1
31 Ethyl benzene <0.1 <0.1 None
31 Total xylenes <0.3 <0.3 None
PAHs
31 Carcinogenic PAHs <0.3 <0.3 None (as B(α)p TEQ)
31 Total PAH <0.8 <0.8 None
31 Naphthalene <0.1 3.6 None
OCPs
24 Total OCPs <1 <1 None
OPPs
24 Total OPPs <1.7 <1.7 None
PCBs
24 Total PCBs <1 <1 None
Metals
31 Arsenic 1 9 None
31 Cadmium <0.3 <0.3 None
31 Chromium 9.9 35 None
31 Copper 4 67 None

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
31	Lead	9	84	None
31	Mercury	<0.05	0.16	None
31	Nickel	5.3	14	None
31	Zinc	8.9	630	EILs BH114_0.2, BH120_0.2
Asbestos				
24	Asbestos	Not detected	Not detected	None

Human Health Assessment Criteria

All analytes were below the applicable human health assessment criteria. Asbestos was not detected in any of the soil samples analysed.

Ecological Assessment Criteria

Two samples (BH114_0.2 & BH120_0.2) were found to exceed the site specific EILs for the concentration of zinc.

One sample (BH120_2.0) was found to exceed the site specific ESLs for the concentration of TRH-F3.

10. Site Characterisation

10.1 Soil Characterisation

The site consisted of two discrete sections separated by a north-south easement running from Telegraph Road (**Figure 3**):

- The eastern portion consisted of a large paddock area and former location of residential dwellings;
- The western portion consisted of a large factory/warehouse, a single residential dwelling, gravel covered car parking area and stockpiled construction waste.

The majority of the site lies at a similar height and topography to that of Telegraph Road, which runs along the northern perimeter of the site. The regolith in the topographical higher sections of the site is characterised by residual clays with traces of alluvial gravels attributed to the local flood zone. The topographical lower points, in the south of the site, are comprised of alluvial sands with gravels.

The eastern portion of the site comprised exposed soils in the former residential dwelling(s) footprints with traces of foreign materials in the form of demolition waste observed on the ground surface.

Elevated zinc results, above the site specific EILs, were reported for shallow fill / top soil samples collected from the south-western portion of the site. The zinc concentration in the underlying samples was low. The elevated zinc results are localised likely attributed to weathering of stockpiled scrap metal / construction waste or wrecked cars observed within these areas.

Petroleum hydrocarbons (TRH-F3, TRH-F4)were detected at relatively low concentration in fill soils and deeper soils immediately south of the warehouse building (BH120_2.0, BH121_0.2 & BH122_0.1). Sample BH120_2.0 exceeded the site specific ESLs, however the depth was 2 m BGL. Given that large drums of oil and wrecked cars were stored in the general vicinity of these sampling locations, the TRH results may be attributed to historical leakage of fuels / oils. Furthermore, anecdotal information provided by site occupants, coupled with site observations indicated that the area had been built-up and levelled for construction of ancillary buildings for the commercial site. It is likely that historic storage / use of plant in this is responsible for the presence of remnant petroleum hydrocarbons at depth. Given the depth and localised nature of petroleum hydrocarbon in soil (TRH-F3 at 2 m BGL), the ESL exceedance is not likely to pose an unacceptable risk to neither receptors of the proposed development nor any local ecological receptors.

Location BH123 situated adjacent to the UST did not report any petroleum hydrocarbons in shallow fill (0.1m BGL) or in deeper natural soil (0.6 m BGL). Indicating that the staining observed on the soil surface adjacent the bowser was localised and has not significantly penetrated the sub-surface.

All analytes were below the applicable human health assessment criteria for a commercial / industrial land use setting. The ecological risk from zinc at two shallow locations and petroleum hydrocarbons (TRH-F3) at one deeper location (2 m BGL) was low and acceptable.

10.2 Review of Conceptual Site Model

Based on investigation findings, the CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential

onsite and offsite receptors. Concentrations of contaminants were identified which indicated accuracy of the model, and adequate characterisation of the site.

The site walkover inspection identified a number of potential contamination sources in the form of commercial activities at the site; storage of construction materials, oil drums, paints and wrecked cars; underground storage tank (UST) and associated fuel bowser. With the exception of surficial oil staining adjacent the fuel bowser, the identified potential contamination sources do not appear to have grossly impacted the site.

Note: El was informed by the client that a substantial amount of surface waste and scrap metal etc. has since been removed from the site since site inspection by El (see Photographs 11 & and 12, **Appendix I**)

11. Conclusion

Mr. Caleb Jackson of Apollo Fabrication Group ('the Client') engaged El Australia (El) to conduct a Detailed Site Investigation for the property located at 2-20 Telegraph Road, Young NSW ('the site'). This assessment was conducted to assess the nature and degree of any potential onsite contamination associated with current and former users of the property. The investigation will form part of a Development Application package to Hilltop Council for site redevelopment.

Based on the findings from this DSI it was concluded that:

- The site was occupied by agricultural land and residential dwellings from at least 1944. A commercial / industrial warehouse building(s) was erected on the western section of the site in approximately 1985 and was upgraded to the current warehouse/factory configuration which was established by 2018. The eastern section of the site continued to be used for rural residential purposes, however, the dwelling were demolished,
- The CSM identified the following potential sources of on-site contamination:
 - Fill soils of unknown origin and content;
 - Potential on-site use of pesticides across the agricultural portions of the site; Industrials
 processes in operation of the factory/warehouse including storage of paints, solvents and oils;
 - Oil leaks from equipment, abandoned vehicles and storage on-site;
 - Weathering of galvanised materials including car bodies and scrap metal; and
 - Fuel leakage from the UST on site.
- Analytical results for the representative soil samples collected from across the site were all below the adopted human health assessment criteria relevant for the proposed commercial / industrial development.
- Location BH123 situated adjacent to the UST did not report any petroleum hydrocarbons in shallow fill (0.1m BGL) or in deeper natural soil (0.6 m BGL). Indicating that the staining observed on the soil surface adjacent to the bowser was localised and has not significantly penetrated the sub-surface.
- Two samples (BH114_0.2 & BH120_0.2) collected from the south-western portion of the site, in the vicinity of the wrecked cars and stockpiled construction waste, were above the site specific ecological criterion for the concentration of zinc. The elevated zinc is attributed to the weathering of galvanised materials including car bodies and scrap metal. It is understood that the proposed development would involve the removal of all waste materials including the wrecked cars; therefore removing the source of contamination. It is also noted that the proposed development does not include landscape or setback areas and so the risk to future ecological receptors is considered low.
- Zinc exceeded site specific ecological criterion (EILs), in shallow fill / top soil samples collected from the south-western portion of the site (locations BH114, BH120). The zinc concentration in the deeper underlying samples was low. The elevated zinc results were shallow and localised, and likely attributed to weathering of stockpiled scrap metal / construction waste or wrecked cars observed within these areas.
- Petroleum hydrocarbons (TRH-F3, TRH-F4) fractions were detected at relatively low concentration in fill soils and deeper natural soils immediately south of the warehouse building

(BH120_2.0, BH121_0.2 & BH122_0.1), and sample BH120_2.0 exceeded the site specific ESLs, however the depth was 2 m BGL. Given that drums of oil and wrecked cars were stored in the general vicinity of these sampling locations, the TRH results may be attributed to historical leakage of fuels / oils. It is likely that historic storage / use of plant in this is responsible for the presence of remnant petroleum hydrocarbons at depth and is unlikely to present a risk.

- EI was informed by the client that a substantial amount of surface waste and scrap metal etc. has been removed from the site since site inspection by EI (see Photographs 11 & and 12, Appendix I).
- Zinc impact and petroleum hydrocarbon impact in soil were localised, and the sources on the ground surface had been removed. . , The ecological risk from zinc and petroleum hydrocarbon impact in soil was low and not unacceptable..

Based on the above findings and with due regard for the Statement of Limitations (**Section 13**), El considers that the land is suitable for the proposed development which is equivalent to a land use setting of commercial/industrial. Recommendations provided in **Section 12** should be implemented to aid the proposed redevelopment.

12. Recommendations

Based on the findings of this DSI, the following recommendations should be implemented to ensuring the site is made suitable for the proposed development:

- The shallow soil materials in the vicinity of the fuel bowser, that has been impacted by surficial oil staining, should be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines, and disposed of at an appropriately licenced waste receiving facility;
- Should it be desirable to (temporarily) store waste oil drums or construction waste on the site.
 These materials should be stored on a concrete hardstand with appropriate leak / spill protection measures in place.
- Any material being removed from the site as part of the proposed redevelopment, including surplus fill and potentially impacted soils, and virgin excavated natural materials (VENM), is required to undergo waste classification assessment to inform off-site disposal in accordance the NSW EPA (2014) Waste Classification Guidelines; and
- Any material being imported to the site should be assessed for potential contamination in accordance with NSW EPA Guidelines, as being suitable for the intended land use.

13. Statement of Limitations

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for the above named client and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

References

- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, August 2018.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- CRC CARE (2017) Risk-based management and remediation guidance for benzo(a)pyrene, CRC CARE Technical report no.39, CRC for Contamination Assessment and Remediation of the Environment, Newcastle, Australia, January 2017.
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- Eddie, M.W (2000) Soil Landscapes of the Macksville and Nambucca 1:100 000 Sheets; Department of Land and Water Conservation, Sydney.
- EnRisk (2016) Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs, Environmental Risk Services Pty Ltd, NSW EPA, 25 February 2016.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2014) Waste Classification Guidelines. Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.
- EPA (2015) Contaminated Land Management: Guidelines on the Duty to Report Contamination, EPA 2015/0164, September 2015
- EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), Doc. EPA 2017P0269, October 2017.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- US EPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.

Abbreviations

ASS Acid sulfate soils

B(a)P Benzo(a)Pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient

BH Borehole

BTEX Benzene, Toluene, Ethylbenzene, Xylene

COC Chain of Custody

CVOCs Chlorinated Volatile Organic Compounds (a sub-set of the VOC analysis suite)

DEC Department of Environment and Conservation, NSW (see OEH)
DECC Department of Environment and Climate Change, NSW (see OEH)

DECCW Department of Environment, Climate Change and Water, NSW (see OEH)

DA Development Application

DP Deposited Plan

EPA Environment Protection Authority

F1 TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1) F2 TRH $> C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)

GIL Groundwater Investigation Level
GME Groundwater Monitoring Event
HIL Health-based Investigation Level
HSL Health-based Screening Level

km Kilometres

LNAPL Light, non-aqueous phase liquid (also referred to as PSH)

DNAPL Dense, non-aqueous phase liquid
EIL Ecological Investigation Level
ESL Ecological Screening Level

m Metres

mAHD Metres Australian Height Datum mBGL Metres Below Ground Level

mg/L Milligrams per litre µg/L Micrograms per litre

mV Millivolts

NATA National Association of Testing Authorities, Australia

NEPC National Environmental Protection Council

NSW New South Wales

OEH Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)

PAHs Polycyclic Aromatic Hydrocarbons

pH Measure of the acidity or basicity of an aqueous solution PSH Phase-separated hydrocarbons (also referred to as LNAPL)

PQL Practical Quantitation Limit (limit of detection for respective laboratory instruments)

QA/QC Quality Assurance / Quality Control SILs Screening Investigations Levels

SRA Sample receipt advice (document confirming laboratory receipt of samples)

SWL Standing Water Level

TDS Total dissolved solids (a measure of water salinity)

TPH Total Petroleum Hydrocarbons (superseded term equivalent to TRH)

TRH Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)

USEPA United States Environmental Protection Agency

UST Underground Storage Tank

VOCs Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A - Figures

Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Drawn:	L.C.
Approved:	-
Date:	08-12-20
Scale:	Not To

Apollo Fabrication Group

Preliminary Site Investigation 2-20 Telegraph Rd, Young NSW

Site Locality Plan

Figure:

1

Project: E24959 E01 Rev0

LEGEND

Site Boundary

Location of exposed soils with foreign materials Location of waste oil drums

Location of UPSS

Location of stored wrecked cars

Location of stockpiled construction waste

*All Locations are approximate

Drawn:	SJ
Approved:	JT
Date:	12-01-21

Apollo Fabrication Group Detailed Site Investigation 2-20 Telegraph Rd, Young NSW Site Layout Plan

Figure:

Project: E24959.E02

LEGEND

Site boundary
Approximate borehole location

Drawn:	SJ
Approved:	JT
Date:	12-01-21

Apollo Fabrication Group
Detailed Site Investigation
2-20 Telegraph Rd, Young NSW
Site Layout Plan

Figure:

3

Project: E24959.E02

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix B – Tables

Table 1 - Summary of Soil Analytical results E24959.E02 - Young

																											-02 - 10
						Heav	y Metals					PAHs				В	TEX				т	RH		Pes	stices	PCBs	Asbes
Sample ID	Date of sampling	Material description	As	Cd	Cr (total)	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Naphthalene	Total PAHs	Benzene	Toluene	Ethylbenzene	o-Xylene	m/p-Xylene	Total Xylenes	F1	F2	F3	F4	OCPs	OPPs	Total	Identification
BH101_0.2		Top Soil	2	<0.3	11	7	18	<0.05	6.3	43	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<1	<1.7	<1	N
BH101_0.7	† F	Natrual: Sandy CLAY	2	<0.3	20	7	13	< 0.05	7.0	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	N
BH102_0.2	1	Top Soil	2	< 0.3	16	7	10	< 0.05	7.0	14	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	<1	<1.7	<1	١
BH103_0.2	1	Top Soil	2	< 0.3	22	6	10	< 0.05	7.9	20	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	1
BH104_0.3	1 -	Top Soil	2	< 0.3	16	7	11	< 0.05	7.7	16	< 0.3	< 0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH105_0.3	1 [Top Soil	3	< 0.3	28	10	12	< 0.05	12	20	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH106_0.3	1 [Top Soil	2	< 0.3	13	5	10	< 0.05	7.0	8.9	< 0.3	<0.1	<0.8	<0.1	<0.1	< 0.1	<0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH107_0.3		Top Soil	3	< 0.3	18	7	11	< 0.05	7.9	15	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH108_0.2		Top Soil	1	< 0.3	10	7	20	0.07	6.7	49	< 0.3	<0.1	<0.8	< 0.1	<0.1	< 0.1	<0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	1
BH108_0.7		Natrual: Sandy SILT	2	< 0.3	12	5	12	< 0.05	6.7	24	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	NA	NA	NA	1
BH109_0.3	8/12/2020	Top Soil	2	< 0.3	15	4	9	< 0.05	5.3	10	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH110_0.2	L	Top Soil	2	< 0.3	17	5	11	< 0.05	6.6	14	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH111_0.2	L	Top Soil	1	< 0.3	11	6	15	< 0.05	5.8	25	< 0.3	<0.1	<0.8	<0.1	<0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH111_0.7	L	Natrual: Sandy CLAY	1	< 0.3	9.9	5	10	< 0.05	6.9	11	< 0.3	<0.1	<0.8	<0.1	<0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	NA	NA	NA	1
BH112_0.2	<u> </u>	Top Soil	2	< 0.3	20	6	15	< 0.05	9.2	22	< 0.3	<0.1	<0.8	<0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	- 1
BH113_0.2	L	Top Soil	2	< 0.3	29	14	22	< 0.05	14	54	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH113_1.2	<u> </u>	Top Soil	3	< 0.3	28	7	15	< 0.05	11	33	< 0.3	< 0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH114_0.2	<u> </u>	Top Soil	9	< 0.3	22	61	60	< 0.05	7.6	630	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH114_0.7	L	Natrual: Sandy CLAY	2	< 0.3	25	7	15	< 0.05	11	47	< 0.3	<0.1	<0.8	<0.1	<0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	NA	NA	NA	
BH115_0.2	L	Top Soil	4	< 0.3	31	67	53	< 0.05	12	310	< 0.3	<0.1	<0.8	< 0.1	< 0.1	<0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH116_0.2		Top Soil	3	< 0.3	20	8	12	< 0.05	7.7	14	< 0.3	<0.1	<0.8	<0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH117_0.2	<u> </u>	Top Soil	3	< 0.3	17	7	12	< 0.05	7.0	15	< 0.3	< 0.1	<0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH118_0.3	<u> </u>	Top Soil	1	< 0.3	15	7	12	< 0.05	6.3	39	< 0.3	< 0.1	<0.8	<0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH118_0.8	<u> </u>	Natural: Gravelly SAND	2	< 0.3	22	9	12	<0.05	7.2	37	< 0.3	<0.1	<0.8	< 0.1	< 0.1	< 0.1	<0.1	< 0.2	< 0.3	<25	<25	<90	<120	NA	NA	NA	1
BH119_0.2	-	Top Soil	2	< 0.3	35	15	84	0.16	5.6	130	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH120_0.2	9/12/2020	Top Soil	3	<0.3	23	21	26	<0.05	14	540	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH120_2.0	-	Natural: Gravelly SAND	2	<0.3	20	10	22	<0.05	7.5	55	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.3	<25	39	1900	480	NA	NA	NA	
BH121_0.2	-	Top Soil	2	<0.3	21	13	19	< 0.05	12	360	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.3	<25	<25	120	<120	<1	<1.7	<1	
BH122_0.1	-	Top Soil	4	<0.3	13	10	9	< 0.05	6.9	59	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.3	<25	25	<90	<120	<1	<1.7	<1	
BH123_0.1	-	Top Soil	2	<0.3	14	8	22	< 0.05	9.0	30	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	
BH123_0.6		Natural: Gravelly SAND	2	<0.3	14	7	11	<0.05	6.7	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	<25	<90	<120	NA	NA	NA	
cal Analysis	Maximum concentration	an .	Τ .	-0.0	1 05	67	84	0.40		000	-0.0	<0.1	<0.8	0.4	0.4	0.4	0.4	<0.2	<0.3	-25	1 00	4.000	400	-1	<1.7	<1	_
	95% UCL - Fill / Top S		9	<u.3< td=""><td>35 NC</td><td>b/</td><td>84</td><td>0.16</td><td>14 NC</td><td>630</td><td><u.3< td=""><td><0.1</td><td>NC</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.2</td><td><0.3</td><td><25</td><td>39</td><td>1,900</td><td>480</td><td>NO .</td><td>NC</td><td>VIO</td><td>-</td></u.3<></td></u.3<>	35 NC	b/	84	0.16	14 NC	630	<u.3< td=""><td><0.1</td><td>NC</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.2</td><td><0.3</td><td><25</td><td>39</td><td>1,900</td><td>480</td><td>NO .</td><td>NC</td><td>VIO</td><td>-</td></u.3<>	<0.1	NC	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<25	39	1,900	480	NO .	NC	VIO	-
	95% UCL - Natural So		NC NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC NC	NC NC	
	3070 GGE 14atarar GG		NO	INC	INC	NC	NC	NO	INC	INC	INC	INC	INC	INC	NC	INC	INC	INC	INC	INC	INC	NC	INC	NC	INC	INC	
	HIL D - Commercial / Indu Table 1A(1)	strial	3000	900	3600	240,000	1,500	730	6,000	400,000	40		4,000											3600		7	
	Table IA(1)	0 m to <1 m			Cr(VI)									3	NL	NL		230		260	NL						
HSL D - Commercial	/ Industrial	1 m to <2 m												3	NL NL	NL NL	+	NL NL		370	NL NL						
Soil texture classificat		2 m to <4 m												3	NL NL	NL NL	-	NL		630	NL NL						
Table 1A(3)	· -	4 m +												3	NL NL	NL NL		NL		NL	NL NL						
Management Lim	its - Residential, parkland													1 3	INL	INL		INL		INL	INL		T	1			
Management Lim	coarse grained soil textu Table 1B(7)																			700	1,000	2500	10,000				
	Asbestos contamination F Bonded ACM (%w/w Table 7																										
	Asbestos contamination F Bonded / Friable Asbesto																										0
	Table 7 Asbestos contamination F forms of asbestos on soil																										
	Table 7																			•	T			,		,	1
		Levels (EILs) /				1	1	1	60						1	1			105	1	1		ı				

Highlighted values indicates concentration exceeds Human Health Based Soil Criteria (HSL / HIL).
Highlighted values indicates concentration exceeds Ecological Based Soil Criteria (ESL / EIL).
Highlighted indicates the adopted criteria exceeded.
The indicated criteria does not address these contaminant parameters

SILS HSL A NA NC NL ND NVA F1 F2 F3 F4

The indicated criteria does not address these contaminant parameters

Soil Investigation levels from Schedule B1 (table reference indicated) of the National Environmental Protection Measure 1999 - Amendment 2013

NEPC 2013 'HSL D' Health Based Screening Levels applicable for residential setting (with soil access).

Not Analysed' i.e. the sample was not analysed.

Not Calculated'

Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical.

Not Detected

No Visible Asbestos

To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

To obtain F2 subtract Naphthalene from the >C10-C16 fraction.

(>C16-C34)

(>C34-C40)

Table H6 - Summary of Soil RPD Data

			TI	RH			ВТ	EX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory I	Duplicate - Soil Investi	gation															
BH123_0.6	Natural: CLAY	< 25	< 25	110	< 120	<0.1	<0.1	<0.1	<0.3	2	<0.3	14	6.8	11	<0.05	6.7	13
QD-1	BFD	< 25	< 25	120	< 120	<0.1	<0.1	<0.1	<0.3	2	<0.3	13	5.3	11	< 0.05	5.6	11
	RPD	0.00	0.00	8.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.41	24.79	0.00	0.00	17.89	16.67
Inter-Laborator	y Duplicate - Soil Inv	estigation															
BH123_0.6	Natural: CLAY	< 25	< 25	110	< 120	<0.1	<0.1	<0.1	<0.3	2	<0.3	14	6.8	11	< 0.05	6.7	13
QT-1	BFT	< 25	<50	<100	< 100	<0.2	<0.5	<1	<2	<4	<0.4	15	8	12	<0.1	7	13
	RPD	0.00	NA	9.52	NA	NA	NA	NA	NA	66.67	NA	6.90	16.22	8.70	NA	4.38	0.00
Trip Spike																	
TS	Soil	-	-	-	-	91%	89%	89%	90%	-	-	-	-	-	-	-	-
Trip Blank																	
TB	Soil	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
Rinsate Blanks																	
QR1	De-ionised water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.3	<0.5	<1	<1	<0.05	<0.5	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

66.67 RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005) RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix C – Borehole Logs

Sheet

Project Detailed Site Investigation
Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2

Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Inclination -90°

Date Started 8/12/20
Date Completed 9/12/20

1 OF 1

Logged JT Checked

			Inclination -90°		Checked
Drilling	Sampling		Field Material Desc	ription	
METHOD PENETRATION RESISTANCE WATER DEPTH (metres)	SAMPLE OR FIELD TEST OO	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
0.0 -	BH101_0.2 ES	- CL	FILL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. Sandy CLAY; low plasticity, dark red-brown, with trace fine grained, sub-rounded gravels, no odour.	-	NATURAL
O.5 —	BH101_0.7 ES		grained, sub-rounded gravels, no odour.	M -	
1.0			Hole Terminated at 1.00 mBGL; Target Depth Reached.		
			Talget Depti Neadled.		
1.5 —					
2.0					
2.5—					
3.0					

Sheet

1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Date Started Position Refer to Figure 2 Date Completed 9/12/20 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked Inclination

					Inclination -90°			Checked
Drilling		Sampling			Field Material Desc	riptic	on	
HOD ETRATION ISTANCE ER TH TH res)	<i>DEPTH</i> RL		GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
0.0 - O.5 -	0.10	BH101_0.7 ES		CL	TOPSOIL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. Sandy CLAY; low plasticity, dark red-brown, with trace fine grained, sub-rounded gravels, no odour.	М	-	TOPSOIL NATURAL
-1.0	1.00			•	Hole Terminated at 1.00 mBGL; Target Depth Reached.			
1.5 —								
2.0 —								
2.5—								
3.0								

1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Sheet Date Started Position Refer to Figure 2 Date Completed 9/12/20 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Logged JT Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Checked Inclination

Defiling Sampling SAMPLE OR SAMPLE OR SAMPLE OR SOLFROCK MATTERN LESCRIPTION SOLFROCK MATTERN LESCRIPTION STRUCTURE AND ADDITIONAL ACCIDENT OR ADDITIONAL ACCIDENT OR SERVICE OR SOLFROCK MATTERN LESCRIPTION STRUCTURE AND ADDITIONAL ACCIDENT OR ADDITIONAL ACCIDENT OR SERVICE OR SOLFROCK MATTERN LESCRIPTION STRUCTURE AND ADDITIONAL ACCIDENT OR ADDITIONAL ACCIDENT OR SERVICE OR SOLFROCK MATTERN LESCRIPTION STRUCTURE AND ADDITIONAL ACCIDENT OR STRUCTURE AND ADDITIONAL ACCIDENT OR ADDITIONAL ACCIDENT OR STRUCTURE AND ADDITIONAL ACCIDENT OR ADDITIONAL ACCIDENT OR SOLFROCK MATTERN LESCRIPTION STRUCTURE AND ACCIDENT OR ADDITIONAL ACCIDENT OR ADDITIONAL ACCIDENT OR SOLFROCK MATTERN LESCRIPTION TOPPOCH CASH REGISTRY TOP TOPPOCH CASH REGISTRY TOP NATURAL Topic Terminated at 0.50 mBOL; Target Outpin Recorded. 1.5 2.5 3.7 1.5 3.7 ANTUGAL Topic Terminated at 0.50 mBOL; Target Outpin Recorded.			inciliation -90		Officered
BH103_0.2 ES BH103_0.2 ES BH103_0.2 ES TOPSOIL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. M NATURAL Hole Terminated at 0.90 mBGL; Target Depth Reached.		Sampling	Field Material Desc	ription	T
BH103_0.2 ES	METHOD PENETRATION RESISTANCE WATER DEPTH (metres)	SAMPLE OR FIELD TEST	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
BH103_0.2 ES BH103_0.2 ES BH103_0.2 ES Hole Terminated at 0.90 mBGL; Target Depth Reached.		BH103_0.2 ES	TOPSOIL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour.	M -	TOPSOIL
1.0—		BH103_0.2 ES	Sandy CLAY; low plasticity, dark red-brown, with trace fine grained, sub-rounded gravels, no odour.	. "	NATURAL
	1.0—		Hole Terminated at 0.90 mBGL; Target Depth Reached.		

1 OF 1

8/12/20

Project Detailed Site Investigation 2-20 Telegraph Rd, Young NSW Location

Sheet Date Started Position Refer to Figure 3 Date Completed 9/12/20 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Logged JT Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Checked Inclination -90°

		Dril	ling	_	Sampling				Field Material Descr	riptic	n		_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	_
AD	-	GWNE	0.0	0.10	BH104_0.3 ES			CL	TOPSOIL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. Sandy CLAY; low plasticity, dark red-brown, with trace fine grained, sub-rounded gravels, no odour.	D	-	TOPSOIL NATURAL	
			1.5 —	0.80					Hole Terminated at 0.80 mBGL; Target Depth Reached.				
			3.0		This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndaro	d note	es.	_

Sheet

1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Date Started Position Refer to Figure 2 Date Completed 9/12/20 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked Inclination -90°

									Inclination -90°			Checked
		Dril	ling		Sampling			_1	Field Material Desc			I
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD		GWNE	0.0	0.10	BH105_0.3 ES			CL	TOPSOIL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. Sandy CLAY; low plasticity, dark red-brown, with trace fine grained, sub-rounded gravels, no odour.	D	-	TOPSOIL NATURAL
			1.0 —	0.90					Hole Terminated at 0.90 mBGL; Target Depth Reached.			
			1.5 —									
			- 2.0 — -									
			2.5									
			3.0 —		This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.

Date Started

Logged JT

Date Completed 9/12/20

Sheet

1 OF 1

8/12/20

Project **Detailed Site Investigation** Location

2-20 Telegraph Rd, Young NSW Position Refer to Figure 2

Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Inclination

Checked

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 NATURAL Sandy CLAY; low plasticity, dark red, with trace fine grained and sub-angular gravels, no odour. BH106_0.3 ES 0.50 0.5 Silty CLAY; low to medium plasticity, with some sub-angular sand and trace gravels, no odour. ΑD Μ BH106_0.8 ES 1.0 1.10 Hole Terminated at 1.10 mBGL; Target Depth Reached. 1.5 2.0 2.5

Sheet Date Started

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2

Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Date Completed 9/12/20 Logged JT

1 OF 1

8/12/20

		_	lling		Sampling				Field Material Descr			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —					-	TOPSOIL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour.	D		TOPSOIL
			-	0.10	BH107_0.3 ES			CL	Sandy CLAY; low plasticity, dark red, with trace fine grained, sub-angular gravels, with trace sub-rounded quartzose gravel, no odour.		-	NATURAL
AD	-	GWNE	0.5							М	-	
			1.0 —									
			-	1.40					Hole Terminated at 1.40 mBGL; Target Depth Reached.			
			1.5 — - -									
			2.0									
			-									
			2.5 —									
			-									
	•	•	3.0—	•	This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndar	d note	es.

Project Detailed Site Investigation
Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2

 Job No.
 E24959.E02
 Contractor

 Client
 Apollo Fabrication Group
 Drill Rig

Contractor STS GeoEnvironmental Pty Ltd
Drill Rig UTE-mounted Drilling Rig

Date Started 8/12/20
Date Completed 9/12/20

1 OF 1

Logged JT

Sheet

									Inclination -90°			Checked
		Dril	ling		Sampling				Field Material Desc	riptio	on	
METHOD	RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD	-	GWNE	0.0	0.40	BH108_0.2 ES BH108_0.7 ES		***************************************	-	FILL: SILT; low plasticity, light brown with trace sub-angular gravels, no odour. Sandy SILT; low plasticity, light brown, with sub-angular sand, no odour.	D	-	FILL
			1.5 —	7.30			. *		Hole Terminated at 1.30 mBGL; Target Depth Reached.			
			2.0									
			- - - - 3.0 —									

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2

E24959.E02 Client Apollo Fabrication Group

Job No.

Contractor STS GeoEnvironmental Pty Ltd Drill Rig UTE-mounted Drilling Rig

Date Started Date Completed 9/12/20 Logged JT

Sheet

1 OF 1

8/12/20

Checked Inclination

AD METHOD FENETRATION RESISTANCE GWNE WATER	0.0 —	0.60	Sampling SAMPLE OR FIELD TEST	RECOVERED	1000	- USCS SYMBOL	FILL: SILT; low plasticity, light brown with trace sub-angular gravels, no odour.	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD METHOD FENETRATION RESISTANCE GWNE WATER	WAIEK O DEPTH O (metres)	0.60	SAMPLE OR FIELD TEST	RECOVERED	100	-	SOIL/ROCK MATERIAL DESCRIPTION FILL: SILT; low plasticity, light brown with trace sub-angular	MOISTURE	CONSISTENCY	
	-	0.60	BH109_0.3 ES			-	FILL: SILT; low plasticity, light brown with trace sub-angular gravels, no odour.			FILL
	4.0	-	BH109_0.8 ES			CL	Sandy CLAY; low plasticity, dark red, with trace fine grained and sub-angular gravels, no odour.	D	-	NATURAL
	1.0	1.10					Hole Terminated at 1.10 mBGL; Target Depth Reached.			
	1.5 — - -	-								
	2.0	- - -								
	2.5	- - -								

Date Completed 9/12/20

Sheet Date Started 1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked Inclination

			ling		Sampling	_			Field Material Desc		,,,,	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 —					-	FILL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour.			FILL
			-		BH110_0.2 ES							
			0.5	0.40				CL	Sandy CLAY; low plasticity, dark red, with trace fine grained, sub-angular gravels, with sub-rounded quartzose gravels, no odour.			NATURAL
2	-	GWNE	-							М	-	
			-		BH110_0.7 ES							
			1.0 —									
			_	1.20					Hole Terminated at 1.20 mBGL:			
			-						Hole Terminated at 1.20 mBGL; Target Depth Reached.			
			1.5 —									
			-									
			-									
			2.0									
			-									
			-									
			2.5 —									
			-									
			-									
			3.0 —	,	This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.

Sheet

1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Date Started Date Completed 9/12/20 Logged JT

					Client	Apoli	io Fabr	icatio	on Group Drill Rig UTE-mounted Inclination -90°	Drillir	ng Rig	Logged JT Checked
			lling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.40	BH111_0.2 ES			- CL	FILL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. Sandy CLAY; low plasticity, dark red, with trace fine grained,	D		FILL
AD		GWNE	0.5		BH111_0.7 ES				Sandy CLAY; low plasticity, dark red, with trace fine grained, sub-angular gravels, with sub-rounded quartzose gravels, no odour.	М	-	
_			—1.0 — -	1.00			<u> </u>		Hole Terminated at 1.00 mBGL; Target Depth Reached.			
			- 1.5 — - -									
			2.0									
			2.5									
			3.0		This hard	nole la	ng shoi	ıld b	e read in conjunction with EI Australia's accompanying sta	ndar	d pot	ac

Sheet Date Started

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Date Completed 9/12/20 Logged JT

1 OF 1

8/12/20

					Client	Apon	io Fabi	icalic	on Group Drill Rig UTE-mounted Inclination -90°	וווווזכ	ig Kig	Logged JI Checked
			lling		Sampling				Field Material Desc			
METHOD	PENE I KALION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	0.40	BH112_0.2 ES				FILL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour.			FILL
AD	-	GWNE	0.5		BH112_0.7 ES			CL	Sandy CLAY; low plasticity, dark red, with trace fine grained, sub-angular gravels, no odour.	м	-	NATURAL
			1.0 —	1.10					Hole Terminated at 1.10 mBGL; Target Depth Reached.			
			- 1.5 — -									
			2.0									
			- 2.5 — - -									
			3.0 —		This bore	nole lo	og shou	uld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.

Date Started

Date Completed 9/12/20

1 OF 1

8/12/20

Sheet

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 2 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked Inclination

			Inclination -90°			
Drilling	Sampling		Field Material Desc	riptic	n _	I
METHOD PENETRATION RESISTANCE WATER DEPTH (metres)	SAMPLE OR FIELD TEST	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
0.0	BH113_0.2 ES	CL	FILL: Sandy CLAY; low plasticity, dark brown, with sub-angular gravels, no odour. Sandy CLAY; low plasticity, dark red, with trace fine grained and sub-angular gravels, no odour.			NATURAL
0.5 —	BH113_0.7 ES			М	-	
1.0	<u>o</u>	CH	Silty CLAY; high plasticity, dark grey, no odour.			
1.5	0	ж сн	Hole Terminated at 1.50 mBGL; Target Depth Reached.	M <pi< td=""><td></td><td></td></pi<>		
2.0 —						
2.5 —						
3.0						

Sheet

1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Date Started Position Refer to Figure 4 Date Completed 9/12/20 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Logged JT Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Checked Inclination -90°

		Dri	lling		Sampling				Field Material Desc	riptic	n		=
METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0.30	BH114_0.2 ES			CL	FILL: Clayey SAND; coarse grained, angular, poorly graded, light brown, with trace fine grained gravels and concrete, no odour. Sandy CLAY; low plasticity, light brown, with fine grained pyritic gravels, no odour.			NATURAL	
AD	-	GWNE	0.5 —	-	BH114_0.7 ES					М	-		
			-	1.10					Hole Terminated at 1.10 mBGL; Target Depth Reached.				
-			1.5										
			2.0										
			- - 2.5 —										
			-										
			3.0—		This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.	_

Date Started

Date Completed 9/12/20

1 OF 1

8/12/20

Sheet

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 5 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked Inclination

	_					_			Inclination -90°	_		Спескеа	_
		Dril	ling		Sampling				Field Material Desc				_
METHOD	PENE I KALION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —	0.20	BH115_0.2 ES			- CL	FILL: Clayey SAND; coarse grained, angular, poorly graded, dark brown, with trace fine grained gravels, no odour. Sandy CLAY; low plasticity, dark red, with trace fine grained,	D		FILL	
AD	-	GWNE	0.5		3.1110_312_23				sub-angular gravels, no odour.	М	-		
			-	0.90	BH115_0.7 ES				Uple Terminated at 0.00 mBCL				
			1.0 —						Hole Terminated at 0.90 mBGL; Target Depth Reached.				
			1.5 —										
			2.0 —										
			2.5 —										
			3.0 —						e read in conjunction with EI Australia's accompanying sta				_

Date Started

Date Completed 9/12/20

Sheet

1 OF 1

8/12/20

Project **Detailed Site Investigation** Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 6 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Inclination

Logged JT Checked

Drilling Sampling **Field Material Description** JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 FILL: Gravelly SAND; coarse grained, angular, poorly graded, dark red, no odour. FILL BH116_0.2 ES 0.30 NATURAL Sandy CLAY; low plasticity, dark red, with trace fine grained, sub-angular gravels, no odour. АР D 0.5 BH116_0.7 ES 1.00 Hole Terminated at 1.00 mBGL; Target Depth Reached. 1.5 2.0 2.5

Date Started

Date Completed 9/12/20

Sheet

1 OF 1

8/12/20

Project Detailed Site Investigation
Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 7

Job No. E24959.E02 Contractor STS GeoEnviror

 Job No.
 E24959.E02
 Contractor
 STS GeoEnvironmental Pty Ltd

 Client
 Apollo Fabrication Group
 Drill Rig
 UTE-mounted Drilling Rig

Drill Rig UTE-mounted Drilling Rig Logged JT Inclination -90° Checked

Drilling Sampling **Field Material Description** JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL 0.0 FILL FILL: Gravelly SAND; coarse grained, angular, poorly graded, dark red, with coarse grained, angular gravels, no odour. D BH117_0.2 ES 0.30 NATURAL Sandy CLAY; low plasticity, dark red, with trace fine grained, sub-angular gravels, no odour. 0.5 ΑD М BH117_0.7 ES 1.0 1.10 Hole Terminated at 1.10 mBGL; Target Depth Reached. 1.5 2.0 2.5

Date Completed 9/12/20

Sheet Date Started 1 OF 1

8/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 8 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked Inclination

			Inclination -90°		Checked
Drilling	Sampling		Field Material Desc		
METHOD PENETRATION RESISTANCE WATER DEPTH (metres)	SAMPLE OR FIELD TEST	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
0.0 - 0.5	BH118_0.3 ES	S S S S S S S S S S S S S S S S S S S	Gravelly SAND; coarse grained, angular, poorly graded, dark red, with sub-rounded gravels, with trace aggregate, no odour. Gravelly SAND; coarse grained, angular, poorly graded, dark red to brown, with sub-rounded gravels, with some low plasticity clay, no odour.	M -	NATURAL
1.20	0		Hole Terminated at 1.20 mBGL; Target Depth Reached.		
1.5 —					
2.0 —					
2.5 —					
3.0					

This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

Date Completed 9/12/20

Sheet Date Started 1 OF 1

9/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 9 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked -90° Inclination

METHOD	PENETRATION RESISTANCE		DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	Field Material Desc	MOISTURE MOITION	CONSISTENCY US	STRUCTURE AND ADDITIONAL OBSERVATIONS
			- 0.0	0.20	BH119_0.2 ES			-	Gravelly SAND; coarse grained, angular, poorly graded, dark red, with sub-rounded gravels, with trace aggregate, no odour. Gravelly SAND; coarse grained, angular, poorly graded, dark red to brown, with sub-rounded gravels, with some low plasticity clay, no odour.			FILL
AD	-	0.5— BH119_0.7								М	-	
			- 1.5 - - -	1.50			0.0.0.0		Hole Terminated at 1.50 mBGL; Target Depth Reached.			
			2.0									
			2.5		This boreho							

Sheet

1 OF 1

9/12/20

Project Detailed Site Investigation 2-20 Telegraph Rd, Young NSW Location

Date Started Position Refer to Figure 10 Date Completed 9/12/20 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Logged JT Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Checked Inclination -90°

		Dri	lling		Sampling				Field Material Desc			
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			- 0.0		BH120_0.2 ES			-	FILL: Gravelly SAND; coarse grained, angular, poorly graded, dark grey to brown, with sub-rounded gravels, with some medium to low plasticity clay, no odour.			FILL
			0.5		BH120_0.7 ES							
AD	-	GWNE	1.0		BH120_1.2 ES					м	-	
			 2.0	1.80	BH120_2.0 ES			S	Gravelly SAND; coarse grained, angular, poorly graded, dark orange, with sub-rounded gravels, no odour.			NATURAL
			- 2.5 — -	2.70			, O , O , O , O , O , O , O , O , O , O		Hole Terminated at 2.70 mBGL; Target Depth Reached.			
			3.0 —		This borehol	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.

Date Started

1 OF 1

9/12/20

Sheet

Project Detailed Site Investigation
Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 11
Job No. E24959.E02

E24959.E02 Apollo Fabrication Group Contractor STS GeoEnvironmental Pty Ltd
Drill Rig UTE-mounted Drilling Rig

nmental Pty Ltd Date Completed 9/12/20 rilling Rig Logged JT

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Logged J
Inclination -90° Checked

		_											=
\vdash	1_		lling		Sampling	+		_	Field Material Desc	iptic	on ≻		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0		BH121_0.2 ES				FILL: Gravelly SAND; coarse grained, angular, poorly graded, dark grey to brown, with sub-rounded gravels, with some medium to low plasticity clay, no odour.			FILL	
AD	-	GWNE	- - -	0.90	BH121_0.7 ES			S	Gravelly SAND; coarse grained, poorly graded, angular, dark orange, with sub-rounded gravels, no odour.	D	-	NATURAL	
			1.0 —		BH121_1.20 ES))))	0.0.0.0.0.0.0.0						
			1.5 —	1.80		7	0.000		Hole Terminated at 1.80 mBGL;				
			2.0 —						Target Depth Reached.				
			2.5 —										
3			3.0		This horehole	logs	show	ld be	e read in conjunction with EI Australia's accompanying sta	ndaro	d note	25.	

1 OF 1

9/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 12 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig Inclination

Date Started Date Completed 9/12/20 Logged JT

Sheet

					Client	Apoll	o Fabr	icatio	on Group Drill Rig UTE-mounted Inclination -90°	Jrillin	ig Rig	Logged JT Checked
		Dril	ling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD	PENETRA PESISTAI RESISTAI	GWNE	0.0 — O.5 —	0.20		RECOVE	OGAAPHIC GRAPHIC	S	TOPSOIL: Clayey SAND; fine grained, angular, well graded, dark brown, no odour. Gravelly SAND; coarse grained, angular, poorly graded, dark red to brown, with sub-rounded gravels, with some low plasticity clay, with trace quartzose cobbles, no odour. Hole Terminated at 1.20 mBGL; Target Depth Reached.	INDISION D	COMBIST	ADDITIONAL OBSERVATIONS FILL NATURAL
			2.0 —									

This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

Date Completed 9/12/20

Sheet Date Started 1 OF 1

9/12/20

Project Detailed Site Investigation Location 2-20 Telegraph Rd, Young NSW

Position Refer to Figure 13 Job No. E24959.E02 Contractor STS GeoEnvironmental Pty Ltd

Client Apollo Fabrication Group Drill Rig UTE-mounted Drilling Rig

Logged JT Checked -90° Inclination

		Dril	ling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	0.10	BH123_0.1 ES		\$ 6 6 8 6 8	S	Gravelly SAND; coarse grained, angular, poorly graded, dark red to brown, with sub-rounded gravels, with some low plasticity clay, with trace aggregate, no odour. Gravelly SAND; coarse grained, angular, poorly graded, dark red to brown, with sub-rounded gravels, with some low plasticity clay, with trace cobbles, no odour.			NATURAL
AD	-	GWNE	0.5		BH123_0.6 ES					D	-	
			1.0 —	1.20					Hole Terminated at 1.20 mBGL;			
			-	_					Target Depth Reached.			
			1.5 — - -									
			-	-								
			2.0									
			2.5 —									
			-									
_			3.0 —		This boreho					<u> </u>		

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix D – Field Data Sheets and Calibration

Certificates

Site Inspection Card - CLM Projects Form OP 005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957
E service@eiaustralia.com.au
W www.eiaustralia.com.au
T 02 9516 0722

Project Number:	E24-959	Engineer Name:	7
Date:	9.12.20	Time ON Site:	0. 1
Travel Time:	4.5 hr	Time OFF Site:	08:00
Site Address/Location:		2 2 4 2	11: 00
	-20 Tele	graph Id.	Joung
	1 4	ted man lacke	
	104701 3	ted manulacte	aver
Surrounding Land Uses:			
North: Telegray	ph Rd	Collowed by	ag land
South: Creek	Collowed	by ag land	l / ver
East: low den	se res	lollowed b	y Rord
West: /au la		· ·	
west: 10w der	nse rec	s / ag land	
Current Site Condition			
Buildings Structures:			
slab on ground sus	pended slab	□ basement Level(s)	
	ential lead paint	accessible soils (locations)	□ sub-stations □ service pits / sumps
☐ Other (please decsribe):	F	accessible sons (locations)	
Soil / Vagetation (oversees dis			
Soil / Vegetation (overgrown, dis		ches):	
of site			es dwellings (E parties
Condition of concrete, bitumen re	oading, flooring etc.:		
Stab in build;	ng B ved	co at biolding	I good condition
Evidence of USTs / UPSS Infrastr	ucture:		U
2x Tank (1 x 10000	1 7 1x 50	all hat of the
adjacent mo	in lactor	y door . + f	OL) bant of property,
NA	533 5 14 27 14 14 14		
resence of Waste / Rubbish / Sto	ockpiles:		
nultiple stockpiles	at able	ind & want a	1 1 000
WECKS IN 16 nusual Odours:	iar of	preparty	il dums + car
gned!	7	lame: T. Thomas	Date: 0/10 20

Site Inspection Card - CLM Projects Form OP-005 (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Site Topograph	у (slope of site, surface	e water, drainage, closest rec	ceptor etc.)		malf top
Genera	lly keel	w/ vear	of prep	erty sloping	steeply
roward	creek	5 .			
			1.7		
Hazardous mat	erials / activities: (pres	ence of asbestos, solid or lic	uid hazardous materia	ls, infrastructure)	,
HC	staining	in vicinity.	or per	nol pomser	
			9.15		
				r ge - n	
Anecdotal Info	rmation:			1 2	0021
Des	duellings	in E	ob site	demo	ACPI
L- 1	1261001000	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 1		
70	eavence	provided	tollowing	demo	
			0		
Notes					
Notes:					
					,
	· ·				
		41.		4	
		7 14		7	
				ueta i	- 11/
			19		
			The state of the s		
0:		Namai		Date:	
Signed:		Name:		Date:	N

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix E – Chain of Custody and Sample Receipt Forms

	_5	_			Sam	ple N	latrix								Ana	lysis							Comments
Site: 2-20 7	elegna, ng N	oh Rd, ISW		oject No:			t, etc.)	AHs	AHS					ion	change)	onductivity)		٠					HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	Street, 2015				(i.e. Fibro, Paint,	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			SC	Asbestos Quantification	C (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S		0		HM ^B / PAH	Mercury Nickel Zinc HMB Arsenic
Sample ID	Laboratory ID	Container Type	Sampl	ing	WATER	=	OTHERS	HMA /	HM A	HMA	ВТЕХ	VOCs	Asbestos	sbest	1/CEC	1/EC	ewate	sPOCAS	PFAS	HOLI		CLPH	Cadmium Chromium Lead
	15		Date	Time	*	Soll	ОТ		王	王	B.	>	Ä	Ä	Hd	1q	Ď	S	P	I		¥	Mercury Nickel
BH161_0.2	1	7,21B	8.12.20	AM	_	1		X															Dewatering Suite pH & EC
1101-0.7	2				_	X			X														TDS / Turbidity NTU Hardness
102-0.2	3					X		X															Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
103-0.2	4				-	X		X															TRH (F1, F2, F3, F4) BTEX
103-0.7						X														X			PAH Total Phenol
104-0.3	5					X		X															LABORATORY TURNAROUND
105-0.3	6					X		X															Standard
106-0.3	7					X		X			SGS	EHS	Syd	nev	coc								24 Hours
106 - 0.8						X							146							X			48 Hours
107-0.3	8					+		X										_					72 Hours
108-0-2	9					4		X									81, 111, 18, 81,	_					Other
V 108-0.7	10	1	1	1		4			X									_					
Container Type: J= solvent washed, aci S= solvent washed, aci P= natural HDPE plasti	d rinsed,Tef d rinsed gla c bottle		s jar						est tha stand			sampl	ing pro	ocedu	res.	ccord	ance		76.1			Classificat	ion Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag	Septum						ler's Na	ame (EI)				Rece	ived by nt				_		pler's	Comm		0 500	+ 1, J =
		•				Siar	ature ,	INC	mai	,		Sign	nature	20	مط	\	_				ward		T-1' to
120			uite 6.01, 55 PYRMONT			Date	2	W	_				P	R	Sul	1	_	Ł	NUI	0 10	B		ustralia.com.ae
eiaus	rali	2	Ph: 951	6 0722			10	.12)		Date	5/12	120	e	4,	30	CC:	Lin	da.	(iao	DEI A	ustralia.com.ae
Confirmination Remed	stion Geotechi	rical	COC March 2018 FOR		au			TANT nail lab		ry res	ults to	: lab(@eia	ustra	alia.co	om.a	u						

Sheet 2 of	-5				Sa	mple N	//atrix								Ana	lysis								Comments
Site: See p	age :	1		Project N	No:											2								HM A
Laboratory:	SGS Au	stralia		E14959			Paint, etc.)	X/PAHs bestos	VPAHS					ication	pH / CEC (cation exchange)	EC (electrical conductivity)							_	Cadmium Chromium Copper Lead Mercury
	ALEXA	33 Maddox NDRIA NSW 94 0400 F: 0	2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	HM [≜] /TRH/BTEX/PAHs	HM A /TRH/BTEX			so	Asbestos Quantification	EC (cation	C (electrica	ering Suite	. 81		4			HMB/PAH	Nickel Zinc HM B Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	S	ampling	e WATER	<u>_</u>	HERS	MA /	MAL	MA	ВТЕХ	VOCs	Asbestos	spest	1/ CE	-	Dewatering	sPOCAS	PFAS	0			TCLP	Chromium
			Date			_	ТО	ĪŌ	Ξ	三	8	>	Ä	Ř	p	Hd	ă	S	ď	エ			Ĭ	Mercury Nickel
BH109-0-3	11	J.ZLB	8.12.2	0 Pr	1	Х		X																Dewatering Suite pH & EC
1 109-0.8				1	\perp	X														X				TDS / Turbidity NTU Hardness
BH 110-0.2	12					X		X										•						Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
1 110-0.7						7														X				TRH (F1, F2, F3, F4) BTEX
111-02	13					*		X																PAH Total Phenol
111 - 0.7	14					x			X															LABORATORY TURNAROUND
112 - 0.2	15					X		X																Standard
112-07						X												•		X				24 Hours
113 - 0-2	16					Y		χ																48 Hours
(13 - 0.7						1														X				72 Hours
113 - 1.2	()					+			X															Other
1114-02	18	1	1			+		X																
Container Type: J= solvent washed, ac S= solvent washed, ac P= natural HDPE plast	id rinsed,Te		ss jar			Inve	stigato	or: I atte				nples v				accord	ance	•	Report	t with E	I Waste	e Class	sificati	on Table
VC= glass vial, Teflon ZLB = Zip-Lock Bag							pler's N int	ame (El):			Rece		(SGS)	1			San	npler's	Com	ments:			
						Sie Sie							_	50	2									
100		S		, 55 Miller NT NSW		,	nature					1	nature	43	th-	1								
Oigue	trali	2		9516 072		Da						Dat	iol	12/2	20	04	35							
Contamination Remod	LI All Nation Geotec	CI hrical		ustralia.co		110000000000000000000000000000000000000		TAN7		NP. 200	nulto to	. Jah	Mais	nietr	alia o	om o	111							
			COC March 2	2018 FORM v.4 - SG	S	Fie	ase e-	iiidii idi	Joraic	лу те	suns (J. Iau	Welle	iustic	alla.C	0111.0	ıu							

Sheet 3_ of	_5	-			Sam	ple N	latrix							0	Ana	lysis								Comments
site: see pag	e 1			Project No:	1		ıt, etc.)	AHS	AHs					tion	change)	onductivity)								HM Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	Street, 2015				OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			so	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	SI		4			HM B / PAH	Mercury Nickel Zinc HM Arsenic Cadmium
Sample ID	Laboratory ID	Container Type		pling	WATER	닐	HERS	MA/ CP/O	<i< td=""><td>HMA/</td><td>BTEX</td><td>VOCs</td><td>Asbestos</td><td>spest</td><td>1/ CE</td><td>1/EC</td><td>ewate</td><td>sPOCAS</td><td>PFAS</td><td>10-</td><td></td><td></td><td>CLP</td><td>Chromium Lead</td></i<>	HMA/	BTEX	VOCs	Asbestos	spest	1/ CE	1/EC	ewate	sPOCAS	PFAS	10-			CLP	Chromium Lead
1570			Date	Time	×	SOIL	ТО	ĪO	I	工	B.	>	Ä	Ä	p	p	۵	S	Д				ĭ	Mercury Nickel
BH 114-07	19	J.ZLB	8.12.20	PM	_				X												Dewatering Suite pH & EC			
1 (15-0.2	20							X																TDS / Turbidity NTU Hardness
115-07								_												X				Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
116-0.2	21				1			X																TRH (F1, F2, F3, F4) BTEX
116-07			1	1																X				PAH Total Phenol
117-02	22		9.12.20	AM				X																LABORATORY TURNAROUND
117-07			1	(X				
118 - 0-3	23							X																24 Hours
118-0.8	24								X															48 Hours
119-02	25							X																72 Hours
119-0.7								1.												X				Other_
120 - 0.2	26	J	1	1				X																
Container Type: J= solvent washed, aci S= solvent washed, aci P= natural HDPE plasti	d rinsed,Tel		ss jar			Inves	stigato	r: I atte				iples v sampli				ccord	ance	F	Report	with E	I Wast	e Class	sification	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag	Septum					Samp		ame (El):			Recei	ived by	(SGS):				Sam	pler's	Comr	nents:			
												1000000	_	Su	عط	1								
120		S	uite 6.01, 8				nature					٧	ature	T	Sul			٠						
Oigue	trali	_		16 0722	00	Date	9					Date		2/2	0 6	241	30							
Contamination Remed	LI dil	d	lab@eiaus		.au			TANT				la la 2	@ e ! e											
			COC March 2018	FORM v,4 - SGS		Plea	se e-r	nail lal	orato	ry res	ults to	: lab(weia	ustra	illa.co	om.a	u							

Sheet 4 of 5					San	ple M	latrix								Ana	lysis								Comments
Site: see pag	je 1			gasa				89 40	S						nge)	conductivity)		*						HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXANDE	alia Maddox Stree RIA NSW 2015 0400 F: 02 85	et,					A /TRH/BTEX/PAHs P/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			w	Asbestos Quantification	pH / CEC (cation exchange)	EC (electrical cond	Dewatering Suite			S		1	TCLP HM A/ / PAH	Mercury Nickel HM [®] Arsenic Cadmium
Sample	Laboratory	Container	Samp	ling	WATER	1	OTHER	< 0	HM A /T	4	ВТЕХ	VOCs	Asbestos	besto	/ CE(/ EC	water	SPOCAS	PFAS	Sulphates	Chlorides	9	LP H	Chromium Lead
ID	ID	Туре	Date	Time	×	SOIL	0	OH	Í	I	TB	>	As	As	Ha.	/Hd	De	G.S.	Д.	Sul	ਨ	~	TC	Mercury Nickel
BH 120-0.7				1	_	X																X		Dewatering Suite pH & EC TDS / TDU
1 120-1.2				110		X			. /													X		Hardness Total Cyanide
V(20-2.0 27 X X																						Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)		
BH121-0-2	28					X		X																BTEX PAH
121-07						X																X		Total Phenol
121 - 1.2						X																X		LABORATORY
122 - 0-1	29					X		X																Standard
122 - 0.6						X																X		24 Hours
123-0.1	30					X		X																48 Hours
123 - 0.6	31				Г	X			X															72 Hours
Q0-1	32					X				X														Other
QR-1	33				X					X														
Container Type: J = solvent washed, acid S = solvent washed, acid	rinsed, Tefton se					Inv	vestiga	tor: I at			samp field sa				accord	dance v	with			100000	THE PERSON	ste Clas	sificati	on Table
P = natural HDPE plastic VC = glass vial, Tefton Se ZLB = Zip-Lock Bag	bottle		£	1		Samp		me (EI):	nal	6		Recei Print	ved by		So	λ		1		omme				
Och .		F	ite 6.01, 55 PYRMONT I Ph: 951	VSW 2009		Sign	ature	2	2	7	,	Sign		12/	Bu	01	1 30	1	Pa	ige -	_			
eiaust	tralia	lal	b@eiaustra		au		ORT	ANT	:									1.						
Contamination 1 Remedu	ation Geotechnical	1	COC March 2018 F	ORM v.4 - SGS		Pleas	e e-ma	il labora	atory re	sults to	: lab(@eiau	ustral	ia.cor	m.au									

Sheet 5 of	5				Sam	ple N	latrix								Ana	lysis								Comments
Site: See po	age 1	-	-	Project No:			, etc.)	AHs	Hs					no										Arsenic Cadmium Chromium Copper
Laboratory:	ALEXAN	stralia 33 Maddox IDRIA NSW 94 0400 F: 0	Street, 2015				(i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			SC	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite			77			HM ^B /PAH	Lead Mercury Nickel Zinc HM Arsenic
Sample ID	Laboratory ID	Container Type	Sam	Time	WATER	SOIL	OTHERS (i.e.	HM A /	HM A /	HM A /	BTEX	VOCs	Asbestos	Asbesto	pH / CE	pH / EC	Dewate	sPOCAS	PFAS	101			TCLP H	Cadmium Chromium Lead Mercury
QRB-1		S.P,VC	9.12.20	AM	×										- 1					X				Nickel Dewatering Suite
Trip Blank	34	lab	prep			X					X													pH & EC TDS / Turbidity NTU Hardness
Trip Spike	35	labo	rep			X					X													Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
,		,	,																					TRH (F1, F2, F3, F4) BTEX PAH
																								Total Phenol LABORATORY
																		•						TURNAROUND Standard
																								24 Hours
																								48 Hours
																								72 Hours
																								Other
Container Type:																								
J= solvent washed, acid S= solvent washed, acid P= natural HDPE plasti	d rinsed gla		ss jar			Inves	tigato	r: I atte with				ples w sampli				ccorda	ance	R	eport	with E	Waste	Class	ificatio	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag						Samp	nt .	ame (EI)				Recei Prin	ved by	- 34				Sam	pler's	Comn	nents:			
		S	uite 6.01, 5	55 Miller St	reet,		ature	Thoi	na	7		Sign	ature	5U	3.1	7		CC.	L1	naa	· Xi	166	2 E	Australia
	tral:		PYRMON Ph: 95	T NSW 200 516 0722)9	Date	10	.12	20	,		Date		120	0	4	3							
Contamination Bernadi	Li alla	d New	lab@eiaus	tralia.com.	au	153.0 (100.0)		ANT		rv rec	ulte to													
			COC March 2018	FURM V.4 - SGS		i lea	3C C-1	iaii iab	orato	yresi	uits to	iang	y ela	uolid	iia.CC	JIII.d	u							

CLIENT DETAILS

LABORATORY DETAILS

Linda Xiao Contact

EI AUSTRALIA Client Address

SUITE 6.01 55 MILLER STREET

PYRMONT NSW 2009

61 2 95160722 Telephone (Not specified) Facsimile

Linda.Xiao@eiaustralia.com.au Email

E24959 2-20 Telegraph Rd, Young NSW Project

E24959 Order Number 35 Samples

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400 Telephone

+61 2 8594 0499 Facsimile

Fmail au.environmental.sydney@sgs.com

Thu 10/12/2020

Samples Received Thu 17/12/2020 Report Due SE214668 SGS Reference

SUBMISSION DETAILS

This is to confirm that 35 samples were received on Thursday 10/12/2020. Results are expected to be ready by COB Thursday 17/12/2020. Please quote SGS reference SE214668 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Complete documentation received Yes Yes Sample container provider SGS Ice Bricks Sample cooling method

Samples received in correct containers Sample counts by matrix 32 Soil, 2 Sand, 1 Water Yes 10/12/2020 Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 5.6°C Sufficient sample for analysis Yes

Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

1 soil and 1 water samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS _

Client El AUSTRALIA

Project E24959 2-20 Telegraph Rd, Young NSW

- SUMMARY OF ANALYSIS

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101_0.2	29	14	26	11	7	10	11	7
002	BH101_0.7	-	-	26	-	7	10	11	7
003	BH102_0.2	29	14	26	11	7	10	11	7
004	BH103_0.2	29	14	26	11	7	10	11	7
005	BH104_0.3	29	14	26	11	7	10	11	7
006	BH105_0.3	29	14	26	11	7	10	11	7
007	BH106_0.3	29	14	26	11	7	10	11	7
800	BH107_0.3	29	14	26	11	7	10	11	7
009	BH108_0.2	29	14	26	11	7	10	11	7
010	BH108_0.7	-	-	26	-	7	10	11	7
011	BH109_0.3	29	14	26	11	7	10	11	7
012	BH110_0.2	29	14	26	11	7	10	11	7
013	BH111_0.2	29	14	26	11	7	10	11	7
014	BH111_0.7	-	-	26	-	7	10	11	7
015	BH112_0.2	29	14	26	11	7	10	11	7
016	BH113_0.2	29	14	26	11	7	10	11	7
017	BH113_1.2	-	-	26	-	7	10	11	7
018	BH114_0.2	29	14	26	11	7	10	11	7
019	BH114_0.7	-	-	26	-	7	10	11	7
020	BH115_0.2	29	14	26	11	7	10	11	7
021	BH116_0.2	29	14	26	11	7	10	11	7
022	BH117_0.2	29	14	26	11	7	10	11	7
023	BH118_0.3	29	14	26	11	7	10	11	7
024	BH118_0.8	-	-	26	-	7	10	11	7

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

_ CLIENT DETAILS _

Client El AUSTRALIA

Project E24959 2-20 Telegraph Rd, Young NSW

SUMMARY OF ANALYSIS

		Pesticides in Soil	Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
No.	Sample ID	00	9 O	A A	PC	Tot Ele	T H	9	N Y N
025	BH119_0.2	29	14	26	11	7	10	11	7
026	BH120_0.2	29	14	26	11	7	10	11	7
027	BH120_2.0	-	-	26	-	7	10	11	7
028	BH121_0.2	29	14	26	11	7	10	11	7
029	BH122_0.1	29	14	26	11	7	10	11	7
030	BH123_0.1	29	14	26	11	7	10	11	7
031	BH123_0.6	-	-	26	-	7	10	11	7
032	QD-1	-	-	-	-	7	10	11	7
034	Trip Blank	-	-	-	-	-	-	11	-
035	Trip Spike	-	-	-	-	-	-	11	-

_ CONTINUED OVERLEAF

_ CLIENT DETAILS _

Client El AUSTRALIA

Project E24959 2-20 Telegraph Rd, Young NSW

CI	IB AB	AAF	21/ (\r .	I A A	A I	YSIS

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH101_0.2	2	1	1
002	BH101_0.7	-	1	1
003	BH102_0.2	2	1	1
004	BH103_0.2	2	1	1
005	BH104_0.3	2	1	1
006	BH105_0.3	2	1	1
007	BH106_0.3	2	1	1
008	BH107_0.3	2	1	1
009	BH108_0.2	2	1	1
010	BH108_0.7	-	1	1
011	BH109_0.3	2	1	1
012	BH110_0.2	2	1	1
013	BH111_0.2	2	1	1
014	BH111_0.7	-	1	1
015	BH112_0.2	2	1	1
016	BH113_0.2	2	1	1
017	BH113_1.2	-	1	1
018	BH114_0.2	2	1	1
019	BH114_0.7	-	1	1
020	BH115_0.2	2	1	1
021	BH116_0.2	2	1	1
022	BH117_0.2	2	1	1
023	BH118_0.3	2	1	1
024	BH118_0.8	-	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.

_ CLIENT DETAILS _

Client El AUSTRALIA

Project E24959 2-20 Telegraph Rd, Young NSW

SUMMARY OF ANALYSIS

		Fibre Identification in soil	Mercury in Soil	Moisture Content
No.	Sample ID	正	Σ	Σ
025	BH119_0.2	2	1	1
026	BH120_0.2	2	1	1
027	BH120_2.0	-	1	1
028	BH121_0.2	2	1	1
029	BH122_0.1	2	1	1
030	BH123_0.1	2	1	1
031	BH123_0.6	-	1	1
032	QD-1	-	1	1
034	Trip Blank	-	-	1

_ CONTINUED OVERLEAF

- CLIENT DETAILS		
Client EI AUSTRALIA	Project	E24959 2-20 Telegraph Rd, Young NSW

SUMMARY	OF ANALYSIS —					
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
033	QR-1	1	7	9	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

11/12/2020 Page 6 of 6

						ple N	latrix								Ana	lysis			-					Comments
Site: 2-20 To You	elegrap ng h	oh Ra, 18W		Project No:			, etc.)	4Hs tos	Hs.		-			noi	exchange)	nductivity)		•						HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	12 Ashl CHATS	ab Services ley Street, WOOD NS\ 910 6200		-			OTHERS (i.e. Fibro, Paint, etc.)	A /TRH/BTEX/PAHs P/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			SC	Asbestos Quantification	pH / CEÇ (cation exc	pH / EC (electrical conductivity)	Dewatering Suite	Q					нм ^в , ран	Mercury Nickel Zinc HM ^B Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sai Date	mpling Time	WATER	SOIL	OTHERS	HMA /	нм≜л	HM A //	втех	VOCs	Asbestos	Asbest	pH / CE	pH / EC	Dewate	sPOCAS	PFAS				TCLP	Chromium Lead Mercury
27-1		J	9.72.2	OAM		X				X														Nickel Dewatering Suite
								-	_												-	-		pH & EC TDS / Turbidity NTU Hardness
																-								Total Cyanide Metals (Al, As, Cd, Cr,
																-	_	•						Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
					<u> -</u>											_ <u>-</u>	_							BTEX PAH Total Phenol
																	_			<u> </u>	_			LABORATORY
															7		c.n	rirolati	Service	es :				TURNAROUND
				<u> </u>	 										Cloud	COIL	ICHAIS!	12 A V ood N	shley . SW 201	St 7				Standard
		,			ļ										Job	No:		(02) 9 रि\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0				24 Hours
															Date	Recei	ed:)	1/20	I_{α}	12ē	· }			48 Hours
	:									i					Rece	Recei ved B	k &1	} • Z	3					72 Hours
															Ceali	ng: Tod	Ambie (cepac	k)		1)-	2			Other
															Seco	ily: Int	टिप्डाच	Ken/No	ne					_
Container Type: J= solvent washed, ac S= solvent washed, ac	id rinsed gla		ss jar		•	Inves	stigato	r: I atte with					vere c ing pro			ccord	, ance	F	Report	with E	Waste	e Class	ificatio	on Table
P= natural HDPE plasi VC= glass vial, Teflon							-é .	ame (El)					ived by	(Envir	olab)				pler's	Comn	nents:		ر ا	ا در المالية
ZLB = Zip-Lock Bag	,					Prii	"J:	Thor	nas	-		Pris	" (R	-Ų	روم	en		cc	٠ ٢	indl	λ, Xi	006	υE	Australia.com.a
Set	İ			55 Miller St IT NSW 200	-	Sign	ature	A	>	_		Sigr Date	nature	عرلا	1									
eiaus์	trali	a		516 0722			10	(2 -)		117	12/2	<u>20</u>	5 /	523	<u> </u>							
Contamination Reme-	Contamination Remediation Goodschnied lab@eiaustralia.				au			TANT nail lat		ry res	ults to	: lab@	@ela	ustra	alia.c	om.a	ıu							

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix F – Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Linda Xiao Contact EI AUSTRALIA Client Address **SUITE 6.01**

55 MILLER STREET **PYRMONT NSW 2009**

61 2 95160722 (Not specified)

Linda.Xiao@eiaustralia.com.au Email

E24959 2-20 Telegraph Rd, Young NSW Project

E24959 Order Number 35 Samples

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400 Telephone +61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com Email

SE214668 R0 SGS Reference 10/12/2020 Date Received 18/12/2020 Date Reported

COMMENTS

Telephone

Facsimile

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar BENIAMEEN

Chemist

Dong LIANG

Metals/Inorganics Team Leader

S. Ravenolm.

Kamrul AHSAN

Senior Chemist

Ly Kim HA

Organic Section Head

kmln

Ravee SIVASUBRAMANIAM

Hygiene Team Leader

Shane MCDERMOTT

Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

VOC's in Soil [AN433] Tested: 14/12/2020

			BH101 0.2	BH101 0.7	BH102_0.2	BH103_0.2	BH104_0.3
			_	_	_	_	_
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.002	SE214668.003	SE214668.004	SE214668.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			2011				2011
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.011	SE214668.012	SE214668.013	SE214668.014	SE214668.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

				1	1		
			BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

18/12/2020 Page 2 of 33

VOC's in Soil [AN433] Tested: 14/12/2020 (continued)

			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 8/12/2020 SE214668.021	- 9/12/2020 SE214668.022	- 9/12/2020 SE214668.023	9/12/2020 SE214668.024	9/12/2020 SE214668.025
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	9/12/2020 SE214668.026	9/12/2020 SE214668.027	9/12/2020 SE214668.028	9/12/2020 SE214668.029	9/12/2020 SE214668.030
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH123_0.6	QD-1	Trip Blank	Trip Spike
			SOIL	SOIL	SAND	SAND
			- 9/12/2020	- 9/12/2020	- 9/12/2020	- 9/12/2020
PARAMETER	UOM	LOR	9/12/2020 SE214668.031	9/12/2020 SE214668.032	9/12/2020 SE214668.034	9/12/2020 SE214668.035
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	[91%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	[89%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	[89%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	[90%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	[89%]
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-

18/12/2020 Page 3 of 33

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 14/12/2020

			BH101_0.2	BH101_0.7	BH102_0.2	BH103_0.2	BH104_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.002	SE214668.003	SE214668.004	SE214668.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.011	SE214668.012	SE214668.013	SE214668.014	SE214668.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020
PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	8/12/2020 SE214668.021	9/12/2020 SE214668.022	9/12/2020 SE214668.023	9/12/2020 SE214668.024	9/12/2020 SE214668.025
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.026	SE214668.027	SE214668.028	SE214668.029	SE214668.030
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

18/12/2020 Page 4 of 33

SE214668 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 14/12/2020 (continued)

			BH123_0.6	QD-1
			SOIL - 9/12/2020	SOIL - 9/12/2020
PARAMETER	UOM	LOR	SE214668.031	SE214668.032
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

18/12/2020 Page 5 of 33

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/12/2020

			BH101_0.2	BH101_0.7	BH102_0.2	BH103_0.2	BH104_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.002	SE214668.003	SE214668.004	SE214668.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	8/12/2020 SE214668.011	8/12/2020 SE214668.012	8/12/2020 SE214668.013	8/12/2020 SE214668.014	8/12/2020 SE214668.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

18/12/2020 Page 6 of 33

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/12/2020 (continued)

			BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.024	SE214668.025
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	46
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	9/12/2020 SE214668.026	9/12/2020 SE214668.027	9/12/2020 SE214668.028	9/12/2020 SE214668.029	9/12/2020 SE214668.030
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	1100	66	<45	<45
TRH C29-C36	mg/kg	45	48	1100	93	<45	<45
TRH C37-C40	mg/kg	100	<100	200	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	39	<25	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	39	<25	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	1900	120	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	480	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	2200	160	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	2400	<210	<210	<210

18/12/2020 Page 7 of 33

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/12/2020 (continued)

			BH123_0.6	QD-1
			SOIL	SOIL
			9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.031	SE214668.032
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

18/12/2020 Page 8 of 33

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2020

			BH101_0.2	BH101_0.7	BH102_0.2	BH103_0.2	BH104_0.3
			SOIL -	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	8/12/2020	- 8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.002	SE214668.003	SE214668.004	SE214668.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			DILLOT O O	D1400.00	D11407 0.0	D11400 0 0	D11400 0 =
			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

18/12/2020 Page 9 of 33

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2020 (continued)

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020
PARAMETER	UOM	LOR	SE214668.011	SE214668.012	SE214668.013	SE214668.014	SE214668.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

Naphthalene mg/kg 0.1 <0.1					1	1	1	
PARAMETER DOM LOR SE214688.010 SE214688.010 SE21468.010 SE				BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
PARAMETER UOM LOR SE214668.016 SE214668.017 SE214668.018 SE214668.019 SE214668.020 Naphthalene mg/kg 0.1 <0.1				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE214668.016 SE214668.017 SE214668.018 SE214668.019 SE214668.020 Naphthalene mg/kg 0.1 <0.1								
Naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1								
2-methylnaphthalene mg/kg 0.1 <0.1	PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
1-methy/naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td>Naphthalene</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene mg/kg 0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1 c0.1	Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0	Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&)filuoranthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2<	Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< th=""> TEQ (mg/kg) 0.2 <0.2 <0.3 <0.2 <0.8 <0.8 <0.8<td>Dibenzo(ah)anthracene</td><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td></lor=0<>	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=lor< th=""> TEQ (mg/kg) 0.3 <0.3 <0.2 <0.8 <0.8<!--</td--><td>Benzo(ghi)perylene</td><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td></lor=lor<>	Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""> TEQ (mg/kg) 0.2 <0.2 <0.8 <0.8 <0.8</lor=lor>	Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18) mg/kg 0.8 <0.8 <0.8 <0.8 <0.8 <0.8	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (NEPM/WHO 16) mg/kg 0.8 <0.8 <0.8 <0.8 <0.8 <0.8	Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
	Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

18/12/2020 Page 10 of 33

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2020 (continued)

				1		1	1
			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.024	SE214668.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

SOIL								
PARAMETER DOM LOR SEZ14668.020 SIZ120200 SIZ120200 SIZ120200 SIZ120200 SIZ14668.030 SIZ1466				BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
PARAMETER UOM LOR SE214686.026 SE214668.027 SE214668.028 SE214668.028 SE214668.028 Naphthalene mg/kg 0.1 <0.1				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE214686.026 SE214668.027 SE214668.028 SE214668.028 SE214668.028 Naphthalene mg/kg 0.1 <0.1								
Naphthalene mg/kg 0.1 <0.1	DADAMETED	How	1.00					
2-methy/naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1-methylnaphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td><u>'</u></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>·</td> <td></td>	<u>'</u>					-	·	
Acenaphthylene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	· ·							
Acenaphthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	, ,	mg/kg		-	-	-		
Fluorene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <	Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&)filuoranthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< th=""> TEQ (mg/kg) 0.2 <0.2 <0.3 <0.2 <0.2<td>Dibenzo(ah)anthracene</td><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td></lor=0<>	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=lor< th=""> TEQ (mg/kg) 0.3 <0.3 <0.2 <0.8 <0.8 <0.8<!--</td--><td>Benzo(ghi)perylene</td><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td></lor=lor<>	Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""> TEQ (mg/kg) 0.2 <0.2 <0.8 <0.8 <0.8</lor=lor>	Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18) mg/kg 0.8 <0.8 <0.8 <0.8 <0.8 <0.8	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (NEPM/WHO 16) mg/kg 0.8 <0.8 <0.8 <0.8 <0.8 <0.8	Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
	Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

18/12/2020 Page 11 of 33

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/12/2020 (continued)

			BH123_0.6
			SOIL
			9/12/2020
PARAMETER	UOM	LOR	SE214668.031
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

18/12/2020 Page 12 of 33

OC Pesticides in Soil [AN420] Tested: 14/12/2020

			BH101_0.2	BH102_0.2	BH103_0.2	BH104_0.3	BH105_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
				-		-	
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.003	SE214668.004	SE214668.005	SE214668.006
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

18/12/2020 Page 13 of 33

OC Pesticides in Soil [AN420] Tested: 14/12/2020 (continued)

				l			
			BH106_0.3	BH107_0.3	BH108_0.2	BH109_0.3	BH110_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	8/12/2020 SE214668.007	8/12/2020 SE214668.008	8/12/2020 SE214668.009	8/12/2020 SE214668.011	8/12/2020 SE214668.012
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

18/12/2020 Page 14 of 33

OC Pesticides in Soil [AN420] Tested: 14/12/2020 (continued)

			BH111_0.2	BH112_0.2	BH113_0.2	BH114_0.2	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	8/12/2020 SE214668.013	8/12/2020 SE214668.015	8/12/2020 SE214668.016	8/12/2020 SE214668.018	8/12/2020 SE214668.020
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

18/12/2020 Page 15 of 33

OC Pesticides in Soil [AN420] Tested: 14/12/2020 (continued)

			BH116_0.2	BH117_0.2	BH118_0.3	BH119_0.2	BH120_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	8/12/2020 SE214668.021	9/12/2020 SE214668.022	9/12/2020 SE214668.023	9/12/2020 SE214668.025	9/12/2020 SE214668.026
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
ł				1		1	1

18/12/2020 Page 16 of 33

OC Pesticides in Soil [AN420] Tested: 14/12/2020 (continued)

			BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	9/12/2020 SE214668.028	9/12/2020 SE214668.029	9/12/2020 SE214668.030
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1

18/12/2020 Page 17 of 33

OP Pesticides in Soil [AN420] Tested: 14/12/2020

			BH101_0.2	BH102_0.2	BH103_0.2	BH104_0.3	BH105_0.3
PARAMETER	UOM	LOR	SOIL - 8/12/2020 SE214668.001	SOIL - 8/12/2020 SE214668.003	SOIL - 8/12/2020 SE214668.004	SOIL - 8/12/2020 SE214668.005	SOIL - 8/12/2020 SE214668.006
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH106_0.3	BH107_0.3	BH108_0.2	BH109_0.3	BH110_0.2
			SOIL - 8/12/2020	SOIL - 8/12/2020	SOIL - 8/12/2020	SOIL - 8/12/2020	SOIL - 8/12/2020
PARAMETER	UOM	LOR	SE214668.007	SE214668.008	SE214668.009	SE214668.011	SE214668.012
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH111_0.2	BH112_0.2	BH113_0.2	BH114_0.2	BH115_0.2
			SOIL - 8/12/2020	SOIL - 8/12/2020	SOIL - 8/12/2020	SOIL - 8/12/2020	SOIL - 8/12/2020
PARAMETER	UOM	LOR	SE214668.013	SE214668.015	SE214668.016	SE214668.018	SE214668.020
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

18/12/2020 Page 18 of 33

OP Pesticides in Soil [AN420] Tested: 14/12/2020 (continued)

			BH116_0.2	BH117_0.2	BH118_0.3	BH119_0.2	BH120_0.2
PARAMETER	UOM	LOR	SOIL - 8/12/2020 SE214668.021	SOIL - 9/12/2020 SE214668.022	SOIL - 9/12/2020 SE214668.023	SOIL - 9/12/2020 SE214668.025	SOIL - 9/12/2020 SE214668.026
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH121_0.2	BH122_0.1	BH123_0.1	
			SOIL	SOIL	SOIL	
			9/12/2020	9/12/2020	9/12/2020	
PARAMETER	UOM	LOR	SE214668.028	SE214668.029	SE214668.030	
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	

18/12/2020 Page 19 of 33

PCBs in Soil [AN420] Tested: 14/12/2020

			BH101_0.2	BH102_0.2	BH103_0.2	BH104_0.3	BH105_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.003	SE214668.004	SE214668.005	SE214668.006
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH106_0.3	BH107_0.3	BH108_0.2	BH109_0.3	BH110_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	иом	LOR	SE214668.007	SE214668.008	SE214668.009	SE214668.011	SE214668.012
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH111_0.2	BH112_0.2	BH113_0.2	BH114_0.2	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.013	SE214668.015	SE214668.016	SE214668.018	SE214668.020
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

18/12/2020 Page 20 of 33

PCBs in Soil [AN420] Tested: 14/12/2020 (continued)

			BH116_0.2	BH117_0.2	BH118_0.3	BH119_0.2	BH120_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.025	SE214668.026
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL
			9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.028	SE214668.029	SE214668.030
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

18/12/2020 Page 21 of 33

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 14/12/2020

			BH101_0.2	BH101_0.7	BH102_0.2	BH103_0.2	BH104_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	8/12/2020 SE214668.001	8/12/2020 SE214668.002	8/12/2020 SE214668.003	8/12/2020 SE214668.004	8/12/2020 SE214668.005
Arsenic, As	mg/kg	1	2	2	2	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	20	16	22	16
Copper, Cu	mg/kg	0.5	6.9	6.5	6.9	5.8	6.5
Lead, Pb	mg/kg	1	18	13	10	10	11
Nickel, Ni	mg/kg	0.5	6.3	7.0	7.0	7.9	7.7
Zinc, Zn	mg/kg	2	43	13	14	20	16

			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
Arsenic, As	mg/kg	1	3	2	3	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	28	13	18	10	12
Copper, Cu	mg/kg	0.5	9.6	4.6	6.8	6.6	5.3
Lead, Pb	mg/kg	1	12	10	11	20	12
Nickel, Ni	mg/kg	0.5	12	7.0	7.9	6.7	6.7
Zinc, Zn	mg/kg	2	20	8.9	15	49	24

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.011	SE214668.012	SE214668.013	SE214668.014	SE214668.015
Arsenic, As	mg/kg	1	2	2	1	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	15	17	11	9.9	20
Copper, Cu	mg/kg	0.5	4.0	5.2	6.0	5.0	6.4
Lead, Pb	mg/kg	1	9	11	15	10	15
Nickel, Ni	mg/kg	0.5	5.3	6.6	5.8	6.9	9.2
Zinc, Zn	mg/kg	2	10	14	25	11	22

			BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
Arsenic, As	mg/kg	1	2	3	9	2	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	29	28	22	25	31
Copper, Cu	mg/kg	0.5	14	7.4	61	7.1	67
Lead, Pb	mg/kg	1	22	15	60	15	53
Nickel, Ni	mg/kg	0.5	14	11	7.6	11	12
Zinc, Zn	mg/kg	2	54	33	630	47	310

18/12/2020 Page 22 of 33

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 14/12/2020 (continued)

			D11440 0 0	DUI4E 00	DU440 0.0	D11440 0 0	D11440 0 0
			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			2211		2011	2211	
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.024	SE214668.025
Arsenic, As	mg/kg	1	3	3	1	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	20	17	15	22	35
Copper, Cu	mg/kg	0.5	8.0	6.8	7.1	9.2	15
Lead, Pb	mg/kg	1	12	12	12	12	84
Nickel, Ni	mg/kg	0.5	7.7	7.0	6.3	7.2	5.6
Zinc, Zn	mg/kg	2	14	15	39	37	130

			BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.026	SE214668.027	SE214668.028	SE214668.029	SE214668.030
Arsenic, As	mg/kg	1	3	2	2	4	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	23	20	21	13	14
Copper, Cu	mg/kg	0.5	21	9.9	13	10	8.3
Lead, Pb	mg/kg	1	26	22	19	9	22
Nickel, Ni	mg/kg	0.5	14	7.5	12	6.9	9.0
Zinc, Zn	mg/kg	2	540	55	360	59	30

			BH123_0.6	QD-1
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	9/12/2020 SE214668.031	9/12/2020 SE214668.032
Arsenic, As	mg/kg	1	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	14	13
Copper, Cu	mg/kg	0.5	6.8	5.3
Lead, Pb	mg/kg	1	11	11
Nickel, Ni	mg/kg	0.5	6.7	5.6
Zinc, Zn	mg/kg	2	13	11

18/12/2020 Page 23 of 33

Mercury in Soil [AN312] Tested: 14/12/2020

			BH101_0.2	BH101_0.7	BH102_0.2	BH103_0.2	BH104_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.002	SE214668.003	SE214668.004	SE214668.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.07	<0.05

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.011	SE214668.012	SE214668.013	SE214668.014	SE214668.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.024	SE214668.025
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.16

			BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/12/2020	9/12/2020	9/12/2020	- 9/12/2020	- 9/12/2020
PARAMETER	UOM	LOR	SE214668.026	SE214668.027	SE214668.028	SE214668.029	SE214668.030
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH123_0.6	QD-1
			SOIL	SOIL
			9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.031	SE214668.032
Mercury	mg/kg	0.05	<0.05	<0.05

18/12/2020 Page 24 of 33

Moisture Content [AN002] Tested: 14/12/2020

			BH101_0.2	BH101_0.7	BH102_0.2	BH103_0.2	BH104_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.002	SE214668.003	SE214668.004	SE214668.005
% Moisture	%w/w	1	9.3	8.4	9.0	7.7	13.6

			BH105_0.3	BH106_0.3	BH107_0.3	BH108_0.2	BH108_0.7
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.006	SE214668.007	SE214668.008	SE214668.009	SE214668.010
% Moisture	%w/w	1	11.7	6.3	7.3	3.3	3.4

			BH109_0.3	BH110_0.2	BH111_0.2	BH111_0.7	BH112_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.011	SE214668.012	SE214668.013	SE214668.014	SE214668.015
% Moisture	%w/w	1	2.4	7.1	7.2	5.9	7.0

			BH113_0.2	BH113_1.2	BH114_0.2	BH114_0.7	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.016	SE214668.017	SE214668.018	SE214668.019	SE214668.020
% Moisture	%w/w	1	4.8	14.7	3.5	12.9	12.9

			BH116_0.2	BH117_0.2	BH118_0.3	BH118_0.8	BH119_0.2
			0011	0011	0011		0011
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.024	SE214668.025
% Moisture	%w/w	1	7.9	8.9	10.8	11.0	6.8

			BH120_0.2	BH120_2.0	BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	9/12/2020 SE214668.026	9/12/2020 SE214668.027	9/12/2020 SE214668.028	9/12/2020 SE214668.029	9/12/2020 SE214668.030
% Moisture	%w/w	1	10.5	8.5	8.9	7.2	5.4

			BH123_0.6	QD-1	Trip Blank
			SOIL	SOIL	SAND
					-
			9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.031	SE214668.032	SE214668.034
% Moisture	%w/w	1	7.6	5.2	<1.0

18/12/2020 Page 25 of 33

Fibre Identification in soil [AN602] Tested: 16/12/2020

			BH101_0.2	BH102_0.2	BH103_0.2	BH104_0.3	BH105_0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020	- 8/12/2020
PARAMETER	UOM	LOR	SE214668.001	SE214668.003	SE214668.004	SE214668.005	SE214668.006
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH106_0.3	BH107_0.3	BH108_0.2	BH109_0.3	BH110_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.007	SE214668.008	SE214668.009	SE214668.011	SE214668.012
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH111_0.2	BH112_0.2	BH113_0.2	BH114_0.2	BH115_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	8/12/2020	8/12/2020	8/12/2020	8/12/2020
PARAMETER	UOM	LOR	SE214668.013	SE214668.015	SE214668.016	SE214668.018	SE214668.020
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH116_0.2	BH117_0.2	BH118_0.3	BH119_0.2	BH120_0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			8/12/2020	9/12/2020	9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.021	SE214668.022	SE214668.023	SE214668.025	SE214668.026
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH121_0.2	BH122_0.1	BH123_0.1
			SOIL	SOIL	SOIL
			9/12/2020	9/12/2020	9/12/2020
PARAMETER	UOM	LOR	SE214668.028	SE214668.029	SE214668.030
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

18/12/2020 Page 26 of 33

VOCs in Water [AN433] Tested: 15/12/2020

			QR-1 WATER - 9/12/2020
PARAMETER	UOM	LOR	SE214668.033
Benzene	μg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	μg/L	0.5	<0.5
m/p-xylene	μg/L	1	<1
o-xylene	μg/L	0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5
Total BTEX	μg/L	3	<3
Naphthalene	μg/L	0.5	<0.5

18/12/2020 Page 27 of 33

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 15/12/2020

			QR-1 WATER - 9/12/2020
PARAMETER	UOM	LOR	SE214668.033
TRH C6-C9	μg/L	40	<40
Benzene (F0)	μg/L	0.5	<0.5
TRH C6-C10	μg/L	50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50

18/12/2020 Page 28 of 33

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 16/12/2020

PARAMETER	UOM	LOR	QR-1 WATER - 9/12/2020 SE214668.033
TRH C10-C14	μg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16	μg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500
TRH C10-C40	μg/L	320	<320

18/12/2020 Page 29 of 33

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 14/12/2020

			QR-1
			WATER
PARAMETER	иом	LOR	- 9/12/2020 SE214668.033
Arsenic, As	μg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	μg/L	1	<1
Copper, Cu	μg/L	1	<1
Lead, Pb	μg/L	1	<1
Nickel, Ni	μg/L	1	<1
Zinc, Zn	μg/L	5	<5

18/12/2020 Page 30 of 33

SE214668 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 14/12/2020

			QR-1
			WATER
			-
			9/12/2020
PARAMETER	UOM	LOR	SE214668.033
Mercury	mg/L	0.0001	<0.0001

18/12/2020 Page 31 of 33

METHOD SUMMARY

METHOD _

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

ΔN020

Unpreserved water sample is filtered through a $0.45\mu m$ membrane filter and acidified with nitric acid similar to APHA3030B.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN318

Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

ΔΝ403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

18/12/2020 Page 32 of 33

METHOD SUMMARY

AN602

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

*** Indicates that both * and ** apply.

Not analysed.NVL Not validated.IS Insufficient sample for

LNR analysis.
Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

18/12/2020 Page 33 of 33

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Linda Xiao Contact

EI AUSTRALIA Client **SUITE 6.01** Address

55 MILLER STREET PYRMONT NSW 2009

Manager Laboratory Address

Huong Crawford

SGS Alexandria Environmental

Unit 16. 33 Maddox St

Alexandria NSW 2015

61 2 95160722 Telephone Facsimile (Not specified)

23

Linda.Xiao@eiaustralia.com.au

Telephone Facsimile

+61 2 8594 0400 +61 2 8594 0499

Email

au.environmental.sydney@sgs.com

E24959 2-20 Telegraph Rd, Young NSW Project E24959 Order Number

SGS Reference Date Received

SE214668 R0 10 Dec 2020

18 Dec 2020 Date Reported

COMMENTS

Samples

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Kamrul AHSAN Senior Chemist Ly Kim HA

Organic Section Head

kmln

S. Ravenoln.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

18/12/2020

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

Page 1 of 4

ANALYTICAL REPORT

Fibre Identification in soil

Method AN602

Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w
SE214668.001	BH101_0.2	Soil	321g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.003	BH102_0.2	Soil	131g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.004	BH103_0.2	Soil	135g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.005	BH104_0.3	Soil	143g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.006	BH105_0.3	Soil	264g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.007	BH106_0.3	Soil	158g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.008	BH107_0.3	Soil	128g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.009	BH108_0.2	Soil	144g Sand,Rocks	08 Dec 2020	No Asbestos Found	<0.01
SE214668.011	BH109_0.3	Soil	134g Sand,Rocks	08 Dec 2020	No Asbestos Found	<0.01
SE214668.012	BH110_0.2	Soil	184g Sand,Rocks	08 Dec 2020	No Asbestos Found	<0.01
SE214668.013	BH111_0.2	Soil	104g Sand,Soil	08 Dec 2020	No Asbestos Found	<0.01
SE214668.015	BH112_0.2	Soil	113g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.016	BH113_0.2	Soil	226g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.018	BH114_0.2	Soil	171g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.020	BH115_0.2	Soil	180g Clay,Sand,Rock s	08 Dec 2020	No Asbestos Found	<0.01
SE214668.021	BH116_0.2	Soil	109g Clay,Sand	08 Dec 2020	No Asbestos Found	<0.01
SE214668.022	BH117_0.2	Soil	132g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01
SE214668.023	BH118_0.3	Soil	183g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01
SE214668.025	BH119_0.2	Soil	171g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01
SE214668.026	BH120_0.2	Soil	176g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01
SE214668.028	BH121_0.2	Soil	170g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01

18/12/2020 Page 2 of 4

ANALYTICAL REPORT

RESULTS -	ation in soil				Method	AN602
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE214668.029	BH122_0.1	Soil	231g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01
SE214668.030	BH123_0.1	Soil	232g Clay,Sand,Rock s	09 Dec 2020	No Asbestos Found	<0.01

18/12/2020 Page 3 of 4

SE214668 R0

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

Amosite - Brown Asbestos NA - Not Analysed
Chrysotile - White Asbestos LNR - Listed, Not Required

Crocidolite - Blue Asbestos * - NATA accreditation does not cover the performance of this service .

Amphiboles - Amosite and/or Crocidolite ** - Indicative data, theoretical holding time exceeded.

*** - Indicates that both * and ** apply.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining.

Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining.

Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

18/12/2020 Page 4 of 4

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix G – Laboratory QA/QC Policies and DQOs

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS _

Linda Xiao **Huong Crawford** Contact Manager

EI AUSTRALIA SGS Alexandria Environmental Laboratory Client SUITE 6.01 Unit 16, 33 Maddox St Address Address

55 MILLER STREET Alexandria NSW 2015

PYRMONT NSW 2009

61 2 95160722 +61 2 8594 0400 Telephone Telephone (Not specified) +61 2 8594 0499 Facsimile Facsimile

Linda.Xiao@eiaustralia.com.au au.environmental.sydney@sqs.com Email Email

E24959 2-20 Telegraph Rd, Young NSW SE214668 R0 Project SGS Reference E24959 10 Dec 2020 Order Number Date Received

18 Dec 2020 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate 1 item Volatile Petroleum Hydrocarbons in Soil

1 item

Matrix Spike Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH102_0.2	SE214668.003	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH110_0.2	SE214668.012	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215760	08 Dec 2020	10 Dec 2020	08 Dec 2021	16 Dec 2020	08 Dec 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215760	09 Dec 2020	10 Dec 2020	09 Dec 2021	16 Dec 2020	09 Dec 2021	17 Dec 2020

Mercury (dissolved) in Water

Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311(Perth)/AN3	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-1	SE214668.033	LB215506	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	14 Dec 2020

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH101_0.7	SE214668.002	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH102_0.2	SE214668.003	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH108_0.7	SE214668.010	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH110_0.2	SE214668.012	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH111_0.7	SE214668.014	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215542	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215544	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215544	08 Dec 2020	10 Dec 2020	05 Jan 2021	14 Dec 2020	05 Jan 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH118_0.8	SE214668.024	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020

18/12/2020 Page 2 of 38

Sample Name Sample No. QC Ref

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Mercury in Soil (continued) Met	thod: ME-(AU)-[ENV]AN312
----------------------------------	--------------------------

BH123_0.6	SE214668.031	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
QD-1	SE214668.032	LB215544	09 Dec 2020	10 Dec 2020	06 Jan 2021	14 Dec 2020	06 Jan 2021	17 Dec 2020
Moisture Content							Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH101_0.7	SE214668.002	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH102_0.2	SE214668.003	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH103_0.2	SE214668.004	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH104_0.3	SE214668.005	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH105_0.3	SE214668.006	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH106_0.3	SE214668.007	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH107_0.3	SE214668.008	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH108_0.2	SE214668.009	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH108_0.7	SE214668.010	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH109_0.3	SE214668.011	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH110_0.2	SE214668.012	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH111_0.2	SE214668.013	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH111_0.7	SE214668.014	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH112_0.2	SE214668.015	LB215560	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	16 Dec 2020
BH113_0.2	SE214668.016	LB215561	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH113_1.2	SE214668.017	LB215561	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH114_0.2	SE214668.018	LB215561	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH114_0.7	SE214668.019	LB215561	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH115_0.2	SE214668.020	LB215561	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH116_0.2	SE214668.021	LB215561	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH117_0.2	SE214668.022	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH118_0.3	SE214668.023	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH118_0.8	SE214668.024	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH119_0.2	SE214668.025	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH120_0.2	SE214668.026	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH120_2.0	SE214668.027	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH121_0.2	SE214668.028	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH122_0.1	SE214668.029	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH123_0.1	SE214668.030	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
BH123_0.6	SE214668.031	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
QD-1	SE214668.032	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020
Trip Blank	SE214668.034	LB215561	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	19 Dec 2020	17 Dec 2020

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH101_0.7	SE214668.002	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH102_0.2	SE214668.003	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.7	SE214668.010	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH110_0.2	SE214668.012	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.7	SE214668.014	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

18/12/2020 Page 3 of 38

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

OC Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH116_0.2	SE214668.021	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.8	SE214668.024	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.6	SE214668.031	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
QD-1	SE214668.032	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH101_0.7	SE214668.002	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH102_0.2	SE214668.003	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.7	SE214668.010	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH110_0.2	SE214668.012	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.7	SE214668.014	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.8	SE214668.024	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.6	SE214668.031	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
QD-1	SE214668.032	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH101_0.7	SE214668.002	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH102_0.2	SE214668.003	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.7	SE214668.010	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

18/12/2020 Page 4 of 38

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH110_0.2	SE214668.012	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.7	SE214668.014	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.8	SE214668.024	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.6	SE214668.031	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
QD-1	SE214668.032	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

								IL (10) [Little at 120
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH101_0.7	SE214668.002	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH102_0.2	SE214668.003	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH108_0.7	SE214668.010	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH110_0.2	SE214668.012	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH111_0.7	SE214668.014	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.8	SE214668.024	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.6	SE214668.031	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
QD-1	SE214668.032	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH101_0.7	SE214668.002	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020

18/12/2020 Page 5 of 38

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

Sample Name Sample No. QC Ref Sampled

Method: ME-(AU)-[ENV]AN040/AN320

Analysis Due Analysed

BH102_0.2	SE214668.003	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH103_0.2	SE214668.004	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH104_0.3	SE214668.005	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH105_0.3	SE214668.006	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH106_0.3	SE214668.007	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH107_0.3	SE214668.008	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH108_0.2	SE214668.009	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH108_0.7	SE214668.010	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH109_0.3	SE214668.011	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH110_0.2	SE214668.012	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH111_0.2	SE214668.013	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH111_0.7	SE214668.014	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH112_0.2	SE214668.015	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH113_0.2	SE214668.016	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215534	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215535	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215535	08 Dec 2020	10 Dec 2020	06 Jun 2021	14 Dec 2020	06 Jun 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH118_0.8	SE214668.024	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
BH123_0.6	SE214668.031	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020
QD-1	SE214668.032	LB215535	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	17 Dec 2020

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-1	SE214668.033	LB215512	09 Dec 2020	10 Dec 2020	07 Jun 2021	14 Dec 2020	07 Jun 2021	15 Dec 2020

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH101_0.7	SE214668.002	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH102_0.2	SE214668.003	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH103_0.2	SE214668.004	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH104_0.3	SE214668.005	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH105_0.3	SE214668.006	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH106_0.3	SE214668.007	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH107_0.3	SE214668.008	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH108_0.2	SE214668.009	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH108_0.7	SE214668.010	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH109_0.3	SE214668.011	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH110_0.2	SE214668.012	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH111_0.2	SE214668.013	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH111_0.7	SE214668.014	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH112_0.2	SE214668.015	LB215550	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	16 Dec 2020
BH113_0.2	SE214668.016	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH113_1.2	SE214668.017	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.2	SE214668.018	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH114_0.7	SE214668.019	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH115_0.2	SE214668.020	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH116_0.2	SE214668.021	LB215551	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH117_0.2	SE214668.022	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH118_0.3	SE214668.023	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

18/12/2020 Page 6 of 38

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH118_0.8	SE214668.024	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH119_0.2	SE214668.025	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_0.2	SE214668.026	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH120_2.0	SE214668.027	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH121_0.2	SE214668.028	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH122_0.1	SE214668.029	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.1	SE214668.030	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
BH123_0.6	SE214668.031	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020
QD-1	SE214668.032	LB215551	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	17 Dec 2020

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-1	SE214668.033	LB215735	09 Dec 2020	10 Dec 2020	16 Dec 2020	16 Dec 2020	25 Jan 2021	17 Dec 2020

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

								() []
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH101_0.7	SE214668.002	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH102_0.2	SE214668.003	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH103_0.2	SE214668.004	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH104_0.3	SE214668.005	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH105_0.3	SE214668.006	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH106_0.3	SE214668.007	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH107_0.3	SE214668.008	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH108_0.2	SE214668.009	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH108_0.7	SE214668.010	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH109_0.3	SE214668.011	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH110_0.2	SE214668.012	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH111_0.2	SE214668.013	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH111_0.7	SE214668.014	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH112_0.2	SE214668.015	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH113_0.2	SE214668.016	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH113_1.2	SE214668.017	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH114_0.2	SE214668.018	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH114_0.7	SE214668.019	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH115_0.2	SE214668.020	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH116_0.2	SE214668.021	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH117_0.2	SE214668.022	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH118_0.3	SE214668.023	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH118_0.8	SE214668.024	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH119_0.2	SE214668.025	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH120_0.2	SE214668.026	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH120_2.0	SE214668.027	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH121_0.2	SE214668.028	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH122_0.1	SE214668.029	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH123_0.1	SE214668.030	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH123_0.6	SE214668.031	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
QD-1	SE214668.032	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
Trip Blank	SE214668.034	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
Trip Spike	SE214668.035	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-1	SE214668.033	LB215647	09 Dec 2020	10 Dec 2020	16 Dec 2020	15 Dec 2020	24 Jan 2021	18 Dec 2020

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.2	SE214668.001	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH101_0.7	SE214668.002	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH102_0.2	SE214668.003	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020

18/12/2020 Page 7 of 38

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH103_0.2	SE214668.004	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH104_0.3	SE214668.005	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH105_0.3	SE214668.006	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH106_0.3	SE214668.007	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH107_0.3	SE214668.008	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH108_0.2	SE214668.009	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH108_0.7	SE214668.010	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH109_0.3	SE214668.011	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH110_0.2	SE214668.012	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH111_0.2	SE214668.013	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH111_0.7	SE214668.014	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH112_0.2	SE214668.015	LB215541	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH113_0.2	SE214668.016	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH113_1.2	SE214668.017	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH114_0.2	SE214668.018	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH114_0.7	SE214668.019	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH115_0.2	SE214668.020	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH116_0.2	SE214668.021	LB215543	08 Dec 2020	10 Dec 2020	22 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH117_0.2	SE214668.022	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH118_0.3	SE214668.023	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH118_0.8	SE214668.024	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH119_0.2	SE214668.025	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH120_0.2	SE214668.026	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH120_2.0	SE214668.027	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH121_0.2	SE214668.028	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH122_0.1	SE214668.029	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH123_0.1	SE214668.030	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
BH123_0.6	SE214668.031	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
QD-1	SE214668.032	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
Trip Blank	SE214668.034	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020
Trip Spike	SE214668.035	LB215543	09 Dec 2020	10 Dec 2020	23 Dec 2020	14 Dec 2020	23 Jan 2021	18 Dec 2020

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR-1	SE214668.033	LB215647	09 Dec 2020	10 Dec 2020	16 Dec 2020	15 Dec 2020	24 Jan 2021	18 Dec 2020

18/12/2020 Page 8 of 38

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
	•	•			
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	88
	BH102_0.2	SE214668.003	%	60 - 130%	95
	BH103_0.2	SE214668.004	%	60 - 130%	91
	BH104_0.3	SE214668.005	%	60 - 130%	85
	BH105_0.3	SE214668.006	%	60 - 130%	87
	BH106_0.3	SE214668.007	%	60 - 130%	92
	BH107_0.3	SE214668.008	%	60 - 130%	91
	BH108_0.2	SE214668.009	%	60 - 130%	91
	BH109_0.3	SE214668.011	%	60 - 130%	89
	BH110_0.2	SE214668.012	%	60 - 130%	91
	BH111_0.2	SE214668.013	%	60 - 130%	92
	BH112_0.2	SE214668.015	%	60 - 130%	92
	BH113_0.2	SE214668.016	%	60 - 130%	94
	BH114_0.2	SE214668.018	%	60 - 130%	97
	BH115_0.2	SE214668.020	%	60 - 130%	94
	BH116_0.2	SE214668.021	%	60 - 130%	93
	BH117_0.2	SE214668.022	%	60 - 130%	94
	BH118_0.3	SE214668.023	%	60 - 130%	93
	BH119_0.2	SE214668.025	%	60 - 130%	96
	BH120_0.2	SE214668.026	%	60 - 130%	91
	BH121_0.2	SE214668.028	%	60 - 130%	93
	BH122_0.1	SE214668.029	%	60 - 130%	91
	BH123_0.1	SE214668.030	%	60 - 130%	95

 OP Pesticides in Soil
 Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
2-fluorobiphenyl (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	86
	BH102_0.2	SE214668.003	%	60 - 130%	74
	BH103_0.2	SE214668.004	%	60 - 130%	79
	BH104_0.3	SE214668.005	%	60 - 130%	86
	BH105_0.3	SE214668.006	%	60 - 130%	87
	BH106_0.3	SE214668.007	%	60 - 130%	79
	BH107_0.3	SE214668.008	%	60 - 130%	89
	BH108_0.2	SE214668.009	%	60 - 130%	73
	BH109_0.3	SE214668.011	%	60 - 130%	73
	BH110_0.2	SE214668.012	%	60 - 130%	81
	BH111_0.2	SE214668.013	%	60 - 130%	80
	BH112_0.2	SE214668.015	%	60 - 130%	82
	BH113_0.2	SE214668.016	%	60 - 130%	82
	BH114_0.2	SE214668.018	%	60 - 130%	82
	BH115_0.2	SE214668.020	%	60 - 130%	77
	BH116_0.2	SE214668.021	%	60 - 130%	83
	BH117_0.2	SE214668.022	%	60 - 130%	91
	BH118_0.3	SE214668.023	%	60 - 130%	86
	BH119_0.2	SE214668.025	%	60 - 130%	86
	BH120_0.2	SE214668.026	%	60 - 130%	87
	BH121_0.2	SE214668.028	%	60 - 130%	92
	BH122_0.1	SE214668.029	%	60 - 130%	82
	BH123_0.1	SE214668.030	%	60 - 130%	84
d14-p-terphenyl (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	84
	BH102_0.2	SE214668.003	%	60 - 130%	111
	BH103_0.2	SE214668.004	%	60 - 130%	93
	BH104_0.3	SE214668.005	%	60 - 130%	77
	BH105_0.3	SE214668.006	%	60 - 130%	93
	BH106_0.3	SE214668.007	%	60 - 130%	89
	BH107_0.3	SE214668.008	%	60 - 130%	78
	BH108_0.2	SE214668.009	%	60 - 130%	84
	BH109_0.3	SE214668.011	%	60 - 130%	79
	BH110_0.2	SE214668.012	%	60 - 130%	77
	BH111_0.2	SE214668.013	%	60 - 130%	76
	BH112 0.2	SE214668.015	%	60 - 130%	78

18/12/2020 Page 9 of 38

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	BH113_0.2	SE214668.016	%	60 - 130%	101
	BH114_0.2	SE214668.018	%	60 - 130%	95
	BH115_0.2	SE214668.020	%	60 - 130%	101
	BH116_0.2	SE214668.021	%	60 - 130%	82
	BH117_0.2	SE214668.022	%	60 - 130%	90
	BH118_0.3	SE214668.023	%	60 - 130%	91
	BH119_0.2	SE214668.025	%	60 - 130%	89
	BH120_0.2	SE214668.026	%	60 - 130%	87
	BH121_0.2	SE214668.028	%	60 - 130%	104
	BH122_0.1	SE214668.029	%	60 - 130%	92
	BH123_0.1	SE214668.030	%	60 - 130%	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

arameter	Sample Name	Sample Number	Units	Criteria	Recovery '
2-fluorobiphenyl (Surrogate)	BH101_0.2	SE214668.001	%	70 - 130%	86
	BH101_0.7	SE214668.002	%	70 - 130%	81
	BH102_0.2	SE214668.003	%	70 - 130%	74
	BH103_0.2	SE214668.004	%	70 - 130%	79
	BH104_0.3	SE214668.005	%	70 - 130%	86
	BH105_0.3	SE214668.006	%	70 - 130%	87
	BH106_0.3	SE214668.007	%	70 - 130%	79
	BH107_0.3	SE214668.008	%	70 - 130%	89
	BH108_0.2	SE214668.009	%	70 - 130%	73
	BH108_0.7	SE214668.010	%	70 - 130%	78
	BH109_0.3	SE214668.011	%	70 - 130%	73
	BH110_0.2	SE214668.012	%	70 - 130%	81
	BH111_0.2	SE214668.013	%	70 - 130%	80
	BH111_0.7	SE214668.014	%	70 - 130%	83
	BH112_0.2	SE214668.015	%	70 - 130%	82
	BH113_0.2	SE214668.016	%	70 - 130%	82
	BH113_1.2	SE214668.017	%	70 - 130%	96
	BH114_0.2	SE214668.018	%	70 - 130%	82
	BH114_0.7	SE214668.019	%	70 - 130%	81
	BH115_0.2	SE214668.020	%	70 - 130%	77
	BH116_0.2	SE214668.021	%	70 - 130%	83
	BH117_0.2	SE214668.022	%	70 - 130%	91
	BH118_0.3	SE214668.023	%	70 - 130%	86
	BH118_0.8	SE214668.024	%	70 - 130%	83
	BH119_0.2	SE214668.025	%	70 - 130%	86
	BH120_0.2	SE214668.026	%	70 - 130%	87
	BH120_2.0	SE214668.027	%	70 - 130%	91
	BH121_0.2	SE214668.028	%	70 - 130%	92
	BH122_0.1	SE214668.029	%	70 - 130%	82
	BH123_0.1	SE214668.030	%	70 - 130%	84
	BH123 0.6	SE214668.031	%	70 - 130%	92
d14-p-terphenyl (Surrogate)	BH101_0.2	SE214668.001	%	70 - 130%	84
	BH101_0.7	SE214668.002	%	70 - 130%	77
	BH102_0.2	SE214668.003	%	70 - 130%	111
	BH103_0.2	SE214668.004	%	70 - 130%	93
	BH104_0.3	SE214668.005	%	70 - 130%	77
	BH105_0.3	SE214668.006	% %	70 - 130%	93
	BH106_0.3	SE214668.007	% %	70 - 130%	89
	BH107_0.3	SE214668.008	% %	70 - 130%	78
	BH108_0.2	SE214668.009	%	70 - 130%	84
	BH108_0.7	SE214668.010	% %	70 - 130%	82
	BH109 0.3	SE214668.010		70 - 130%	79
			%		
	BH110_0.2	SE214668.012	%	70 - 130%	77
	BH111_0.2	SE214668.013	%	70 - 130%	76
	BH111_0.7	SE214668.014	%	70 - 130%	79
	BH112_0.2	SE214668.015	%	70 - 130%	78
	BH113_0.2	SE214668.016	%	70 - 130%	101

18/12/2020 Page 10 of 38

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	BH113_1.2	SE214668.017	%	70 - 130%	103
	BH114_0.2	SE214668.018	%	70 - 130%	95
	BH114_0.7	SE214668.019	%	70 - 130%	86
	BH115_0.2	SE214668.020	%	70 - 130%	101
	BH116_0.2	SE214668.021	%	70 - 130%	82
	BH117_0.2	SE214668.022	%	70 - 130%	90
	BH118_0.3	SE214668.023	%	70 - 130%	91
	BH118_0.8	SE214668.024	%	70 - 130%	91
	BH119_0.2	SE214668.025	%	70 - 130%	89
	BH120_0.2	SE214668.026	%	70 - 130%	87
	BH120_2.0	SE214668.027	%	70 - 130%	92
	BH121_0.2	SE214668.028	%	70 - 130%	104
	BH122_0.1	SE214668.029	%	70 - 130%	92
	BH123_0.1	SE214668.030	%	70 - 130%	96
	BH123_0.6	SE214668.031	%	70 - 130%	102
d5-nitrobenzene (Surrogate)	BH101_0.2	SE214668.001	%	70 - 130%	91
	BH101_0.7	SE214668.002	%	70 - 130%	92
	BH102_0.2	SE214668.003	%	70 - 130%	92
	BH103_0.2	SE214668.004	%	70 - 130%	89
	BH104_0.3	SE214668.005	%	70 - 130%	89
	BH105_0.3	SE214668.006	%	70 - 130%	87
	BH106_0.3	SE214668.007	%	70 - 130%	84
	BH107_0.3	SE214668.008	%	70 - 130%	89
	BH108_0.2	SE214668.009	%	70 - 130%	86
	BH108_0.7	SE214668.010	%	70 - 130%	86
	BH109_0.3	SE214668.011	%	70 - 130%	91
	BH110_0.2	SE214668.012	%	70 - 130%	87
	BH111_0.2	SE214668.013	%	70 - 130%	88
	BH111_0.7	SE214668.014	%	70 - 130%	88
	BH112_0.2	SE214668.015	%	70 - 130%	88
	BH113_0.2	SE214668.016	%	70 - 130%	102
	BH113_1.2	SE214668.017	%	70 - 130%	122
	BH114_0.2	SE214668.018	%	70 - 130%	101
	BH114_0.7	SE214668.019	%	70 - 130%	98
	BH115_0.2	SE214668.020	%	70 - 130%	97
	BH116_0.2	SE214668.021	%	70 - 130%	108
	BH117_0.2	SE214668.022	%	70 - 130%	106
	BH118_0.3	SE214668.023	%	70 - 130%	107
	BH118_0.8	SE214668.024	%	70 - 130%	106
	BH119_0.2	SE214668.025	%	70 - 130%	102
	BH120_0.2	SE214668.026	%	70 - 130%	102
	BH120_2.0	SE214668.027	%	70 - 130%	115
	BH121_0.2	SE214668.028	%	70 - 130%	98
	BH122_0.1	SE214668.029	%	70 - 130%	88
	BH123_0.1	SE214668.030	%	70 - 130%	90
	BH123_0.6	SE214668.031	%	70 - 130%	100
	D11120_0.0	OL2 17000.00 1	70	70 100/0	100

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	88
	BH102_0.2	SE214668.003	%	60 - 130%	95
	BH103_0.2	SE214668.004	%	60 - 130%	91
	BH104_0.3	SE214668.005	%	60 - 130%	85
	BH105_0.3	SE214668.006	%	60 - 130%	87
	BH106_0.3	SE214668.007	%	60 - 130%	92
	BH107_0.3	SE214668.008	%	60 - 130%	91
	BH108_0.2	SE214668.009	%	60 - 130%	91
	BH109_0.3	SE214668.011	%	60 - 130%	89
	BH110_0.2	SE214668.012	%	60 - 130%	91
	BH111_0.2	SE214668.013	%	60 - 130%	92
	BH112_0.2	SE214668.015	%	60 - 130%	92

18/12/2020 Page 11 of 38

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (continued) Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH113_0.2	SE214668.016	%	60 - 130%	94
	BH114_0.2	SE214668.018	%	60 - 130%	97
	BH115_0.2	SE214668.020	%	60 - 130%	94
	BH116_0.2	SE214668.021	%	60 - 130%	93
	BH117_0.2	SE214668.022	%	60 - 130%	94
	BH118_0.3	SE214668.023	%	60 - 130%	93
	BH119_0.2	SE214668.025	%	60 - 130%	96
	BH120_0.2	SE214668.026	%	60 - 130%	91
	BH121_0.2	SE214668.028	%	60 - 130%	93
	BH122_0.1	SE214668.029	%	60 - 130%	91
	BH123_0.1	SE214668.030	%	60 - 130%	95

/OC's in Soil					Method: ME-(AU)-[ENV]AN433		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %		
Bromofluorobenzene (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	116		
	BH101_0.7	SE214668.002	%	60 - 130%	113		
	BH102_0.2	SE214668.003	%	60 - 130%	113		
	BH103_0.2	SE214668.004	%	60 - 130%	112		
	BH104_0.3	SE214668.005	%	60 - 130%	113		
	BH105_0.3	SE214668.006	%	60 - 130%	112		
	BH106_0.3	SE214668.007	%	60 - 130%	114		
	BH107_0.3	SE214668.008	%	60 - 130%	116		
	BH108_0.2	SE214668.009	%	60 - 130%	121		
	BH108_0.7	SE214668.010	%	60 - 130%	117		
	BH109_0.3	SE214668.011	%	60 - 130%	104		
	BH110_0.2	SE214668.012	%	60 - 130%	101		
	BH111 0.2	SE214668.013	%	60 - 130%	117		
	BH111_0.7	SE214668.014	%	60 - 130%	116		
	BH112_0.2	SE214668.015	%	60 - 130%	117		
	BH113_0.2	SE214668.016	%	60 - 130%	78		
	BH113_1.2	SE214668.017	%	60 - 130%	76		
	BH114 0.2	SE214668.018	%	60 - 130%	72		
	BH114_0.7	SE214668.019	%	60 - 130%	73		
	BH115_0.2	SE214668.020	%	60 - 130%	74		
	BH116_0.2	SE214668.021	%	60 - 130%	77		
	BH117_0.2	SE214668.022	% %	60 - 130%	70		
	BH118_0.3	SE214668.023	% %	60 - 130%	74		
	BH118_0.8	SE214668.024	% %	60 - 130%	69		
	BH119_0.2	SE214668.025	% %	60 - 130%	71		
	BH120_0.2	SE214668.026	% %	60 - 130%	71		
	BH120_2.0	SE214668.027	% %	60 - 130%	64		
	BH121_0.2	SE214668.028	% 	60 - 130%	72		
	BH122_0.1	SE214668.029	% 	60 - 130%	58 ①		
	BH123_0.1	SE214668.030	% %	60 - 130%	69		
			% %		69		
	BH123_0.6	SE214668.031	% %	60 - 130%			
	QD-1	SE214668.032	·	60 - 130%	71		
	Trip Blank	SE214668.034	<u>%</u>	60 - 130%	73		
d4.4.0 diebless alberts (Ourse sets)	Trip Spike	SE214668.035	<u>%</u>	60 - 130%	71		
d4-1,2-dichloroethane (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	122		
	BH101_0.7	SE214668.002	%	60 - 130%	113		
	BH102_0.2	SE214668.003	%	60 - 130%	111		
	BH103_0.2	SE214668.004	%	60 - 130%	112		
	BH104_0.3	SE214668.005	%	60 - 130%	119		
	BH105_0.3	SE214668.006	%	60 - 130%	97		
	BH106_0.3	SE214668.007	%	60 - 130%	108		
	BH107_0.3	SE214668.008	%	60 - 130%	118		
	BH108_0.2	SE214668.009	%	60 - 130%	115		
	BH108_0.7	SE214668.010	%	60 - 130%	110		
	BH109_0.3	SE214668.011	%	60 - 130%	114		
	BH110_0.2	SE214668.012	%	60 - 130%	89		
	BH111_0.2	SE214668.013	%	60 - 130%	113		

18/12/2020 Page 12 of 38

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

aramotor	Sample Name	Sample Number	Units	Critoria	Popovoru
arameter 4-1,2-dichloroethane (Surrogate)	Sample Name BH111_0.7	Sample Number SE214668.014	W	Criteria 60 - 130%	Recovery ⁴
4-1,2-uicilioroetilarie (Surrogate)	BH112_0.2	SE214668.015	%	60 - 130%	105
	BH113_0.2	SE214668.016	%	60 - 130%	89
	BH113_1.2	SE214668.017	%	60 - 130%	88
	BH114_0.2	SE214668.018	% 	60 - 130%	92
		SE214668.019	% 	60 - 130%	89
	BH114_0.7 BH115_0.2	SE214668.020	% %	60 - 130%	90
	BH116_0.2	SE214668.021	% 	60 - 130%	93
	BH117_0.2	SE214668.022	% %	60 - 130%	85
	BH118_0.3	SE214668.023	% 	60 - 130%	91
	BH118_0.8	SE214668.024	% %	60 - 130%	86
	BH119_0.2	SE214668.025	% 	60 - 130%	88
	BH12_0.2	SE214668.026	% 	60 - 130%	88
	BH120_2.0	SE214668.027	%	60 - 130%	81
	BH121_0.2	SE214668.028	%	60 - 130%	88
	BH122_0.1	SE214668.029	%	60 - 130%	74
	BH123_0.1	SE214668.030	%	60 - 130%	88
	BH123_0.6	SE214668.031	%	60 - 130%	88
	QD-1	SE214668.032	%	60 - 130%	91
	Trip Blank	SE214668.034	%	60 - 130%	95
	Trip Spike	SE214668.035	%	60 - 130%	88
-toluene (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	121
tolastic (Sanogate)	BH101_0.7	SE214668.002	%	60 - 130%	110
	BH102_0.2	SE214668.003	%	60 - 130%	108
	BH103_0.2	SE214668.004	%	60 - 130%	110
	BH104_0.3	SE214668.005	%	60 - 130%	121
	BH105_0.3	SE214668.006	%	60 - 130%	96
	BH106_0.3	SE214668.007	%	60 - 130%	107
	BH107_0.3	SE214668.008	%	60 - 130%	116
	BH108_0.2	SE214668.009	%	60 - 130%	116
	BH108_0.7	SE214668.010	%	60 - 130%	115
	BH109_0.3	SE214668.011	%	60 - 130%	125
	BH110_0.2	SE214668.012	%	60 - 130%	92
	BH111_0.2	SE214668.013	%	60 - 130%	113
	BH111_0.7	SE214668.014	%	60 - 130%	113
	BH112_0.2	SE214668.015	%	60 - 130%	104
	BH113_0.2	SE214668.016	%	60 - 130%	88
	BH113_1.2	SE214668.017	%	60 - 130%	88
	BH114_0.2	SE214668.018	%	60 - 130%	94
	BH114_0.7	SE214668.019	%	60 - 130%	88
	BH115_0.2	SE214668.020	%	60 - 130%	90
	BH116_0.2	SE214668.021	%	60 - 130%	91
	BH117_0.2	SE214668.022	%	60 - 130%	84
	BH118_0.3	SE214668.023	%	60 - 130%	91
	BH118_0.8	SE214668.024	%	60 - 130%	85
	BH119_0.2	SE214668.025	%	60 - 130%	88
	BH120_0.2	SE214668.026	%	60 - 130%	88
	BH120_2.0	SE214668.027	%	60 - 130%	81
	BH121_0.2	SE214668.028	%	60 - 130%	88
	BH122_0.1	SE214668.029	%	60 - 130%	73
	BH123_0.1	SE214668.030	%	60 - 130%	87
	BH123_0.6	SE214668.031	%	60 - 130%	89
	QD-1	SE214668.032	%	60 - 130%	92
	Trip Blank	SE214668.034	%	60 - 130%	95
	Trip Spike	SE214668.035	%	60 - 130%	87

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR-1	SE214668.033	%	40 - 130%	101
d4-1,2-dichloroethane (Surrogate)	QR-1	SE214668.033	%	40 - 130%	94
d8-toluene (Surrogate)	OR-1	SE214668.033	%	40 - 130%	96

18/12/2020 Page 13 of 38

emulsions, surfactants and particulates may void this as an acceptance criterion.

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

olatile Petroleum Hydrocarbons in Soli				Welliod. ME	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	116
	BH101_0.7	SE214668.002	%	60 - 130%	113
	BH102_0.2	SE214668.003	%	60 - 130%	113
	BH103_0.2	SE214668.004	- %	60 - 130%	112
	BH104_0.3	SE214668.005	%	60 - 130%	113
	BH105_0.3	SE214668.006	%	60 - 130%	112
	BH106_0.3	SE214668.007	%	60 - 130%	114
	BH107_0.3	SE214668.008	%	60 - 130%	116
	BH108_0.2	SE214668.009	%	60 - 130%	121
	BH108_0.7	SE214668.010	%	60 - 130%	117
	BH109_0.3	SE214668.011	%	60 - 130%	104
	BH110_0.2	SE214668.012	%	60 - 130%	101
	BH111_0.2	SE214668.013	%	60 - 130%	117
	BH111_0.7	SE214668.014	%	60 - 130%	116
	BH112_0.2	SE214668.015	%	60 - 130%	117
	BH113_0.2	SE214668.016	%	60 - 130%	78
	BH113_1.2	SE214668.017	%	60 - 130%	76
	BH114_0.2	SE214668.018	%	60 - 130%	72
	BH114_0.7	SE214668.019	%	60 - 130%	73
	BH115_0.2	SE214668.020	%	60 - 130%	74
	BH116_0.2	SE214668.021	%	60 - 130%	77
	BH117_0.2	SE214668.022	%	60 - 130%	70
	BH118_0.3	SE214668.023	%	60 - 130%	74
		SE214668.024		60 - 130%	69
	BH118_0.8 BH119_0.2	SE214668.025			
		·	<u>%</u>	60 - 130%	71
	BH120_0.2	SE214668.026	%	60 - 130%	71
	BH120_2.0	SE214668.027	%	60 - 130%	64
	BH121_0.2	SE214668.028	%	60 - 130%	72
	BH122_0.1	SE214668.029	%	60 - 130%	58 ①
	BH123_0.1	SE214668.030	%	60 - 130%	69
	BH123_0.6	SE214668.031	%	60 - 130%	69
	QD-1	SE214668.032	%	60 - 130%	71
4-1,2-dichloroethane (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	122
	BH101_0.7	SE214668.002	%	60 - 130%	113
	BH102_0.2	SE214668.003	%	60 - 130%	111
	BH103_0.2	SE214668.004	%	60 - 130%	112
	BH104_0.3	SE214668.005	%	60 - 130%	119
	BH105_0.3	SE214668.006	%	60 - 130%	97
	BH106_0.3	SE214668.007	%	60 - 130%	108
	BH107_0.3	SE214668.008	%	60 - 130%	118
	BH108_0.2	SE214668.009	%	60 - 130%	115
	BH108_0.7	SE214668.010	%	60 - 130%	110
	BH109_0.3	SE214668.011	%	60 - 130%	114
	BH110_0.2	SE214668.012	%	60 - 130%	89
	BH111_0.2	SE214668.013	%	60 - 130%	113
	BH111_0.7	SE214668.014	%	60 - 130%	115
	BH112_0.2	SE214668.015	%	60 - 130%	105
	BH113_0.2	SE214668.016	%	60 - 130%	89
	BH113_1.2	SE214668.017	%	60 - 130%	88
	BH114_0.2	SE214668.018	%	60 - 130%	92
	BH114_0.7	SE214668.019	%	60 - 130%	89
	BH115_0.2	SE214668.020	%	60 - 130%	90
	BH116_0.2	SE214668.021	%	60 - 130%	93
	BH117_0.2	SE214668.022	% %	60 - 130%	95 85
	BH118_0.3	SE214668.023	%	60 - 130%	91
	BH118_0.8	SE214668.024	%	60 - 130%	86
	BH119_0.2	SE214668.025	%	60 - 130%	88
	BH120_0.2	SE214668.026	%	60 - 130%	88
	BH120_2.0	SE214668.027	%	60 - 130%	81
	BH121_0.2	SE214668.028	%	60 - 130%	88

18/12/2020 Page 14 of 38

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d4-1,2-dichloroethane (Surrogate)	BH123_0.1	SE214668.030	%	60 - 130%	88
	BH123_0.6	SE214668.031	%	60 - 130%	88
	QD-1	SE214668.032	%	60 - 130%	91
d8-toluene (Surrogate)	BH101_0.2	SE214668.001	%	60 - 130%	121
	BH101_0.7	SE214668.002	%	60 - 130%	110
	BH102_0.2	SE214668.003	%	60 - 130%	108
	BH103_0.2	SE214668.004	%	60 - 130%	110
	BH104_0.3	SE214668.005	%	60 - 130%	121
	BH105_0.3	SE214668.006	%	60 - 130%	96
	BH106_0.3	SE214668.007	%	60 - 130%	107
	BH107_0.3	SE214668.008	%	60 - 130%	116
	BH108_0.2	SE214668.009	%	60 - 130%	116
	BH108_0.7	SE214668.010	%	60 - 130%	115
	BH109_0.3	SE214668.011	%	60 - 130%	125
	BH110_0.2	SE214668.012	%	60 - 130%	92
	BH111_0.2	SE214668.013	%	60 - 130%	113
	BH111_0.7	SE214668.014	%	60 - 130%	113
	BH112_0.2	SE214668.015	%	60 - 130%	104
	BH113_0.2	SE214668.016	%	60 - 130%	88
	BH113_1.2	SE214668.017	%	60 - 130%	88
	BH114_0.2	SE214668.018	%	60 - 130%	94
	BH114_0.7	SE214668.019	%	60 - 130%	88
	BH115_0.2	SE214668.020	%	60 - 130%	90
	BH116_0.2	SE214668.021	%	60 - 130%	91
	BH117_0.2	SE214668.022	%	60 - 130%	84
	BH118_0.3	SE214668.023	%	60 - 130%	91
	BH118_0.8	SE214668.024	%	60 - 130%	85
	BH119_0.2	SE214668.025	%	60 - 130%	88
	BH120_0.2	SE214668.026	%	60 - 130%	88
	BH120_2.0	SE214668.027	%	60 - 130%	81
	BH121_0.2	SE214668.028	%	60 - 130%	88
	BH122_0.1	SE214668.029	%	60 - 130%	73
	BH123_0.1	SE214668.030	%	60 - 130%	87
	BH123_0.6	SE214668.031	%	60 - 130%	89
	QD-1	SE214668.032	%	60 - 130%	92

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR-1	SE214668.033	%	40 - 130%	101
d4-1,2-dichloroethane (Surrogate)	QR-1	SE214668.033	%	60 - 130%	94
d8-toluene (Surrogate)	OR-1	SE214668.033	%	40 - 130%	96

18/12/2020 Page 15 of 38

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB215506.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB215542.001	Mercury	mg/kg	0.05	<0.05
LB215544.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

				1.00	
ample Number		Parameter	Units	LOR	Result
3215550.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	100
215551.001	ourrogatos .	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
210001.001		Alpha BHC	mg/kg	0.1	<0.1
		Lindane		0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
			mg/kg		
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
-	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	_	89

18/12/2020 Page 16 of 38

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Dimethoate mg/kg 0.5 <0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Parathion mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Surrogates 2-fluorobiphenyl (Surrogate) % - 109 d14-p-terphenyl (Surrogate) % - 111	Sample Number		Parameter	Units	LOR	Result
Diazinon (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.5 <0.5 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Azinphos-methyl (Gurrogate) % - 109 Azinphos-methyl (Surrogate) % - 101 Dichlorvos mg/kg 0.5 <0.5 Dimethoate mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl (Parathion) mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2	LB215550.001		Dichlorvos	mg/kg	0.5	<0.5
Fenitrothion mg/kg 0.2 c.0.2			Dimethoate	mg/kg	0.5	<0.5
Malathion mg/kg 0.2			Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.5 <0.5 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Parathion-ethyl (Guthion) mg/kg 0.2 <0.2 Parathion-ethyl (Guthion) mg/kg 0.2 <0.2 Parathion-ethyl (Surrogate) % 0.2 <0.2 Parathion-ethyl (Surrogate) % 0.5 <0.5 Parathion-ethyl (Surrogate) mg/kg 0.5 <0.5 Parathion-ethyl (Parathion) mg/kg 0.5 <0.5 Parathion-ethyl (Parathion) mg/kg 0.5 <0.5 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.5 <0.5 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Parathion-ethyl (Parathi			Fenitrothion	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Aizuphos-methyl (Guthion) mg/kg 0.2 <0.2 Aizuphos-methyl (Surrogate) mg/kg 0.2 <0.2 Aizuphos-methyl (Surrogate) % - 109 d14-p-terphenyl (Surrogate) % - 1011 Dialono (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Aizuphos-methyl (Parathion) mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Aizuphos-methyl (Guthion) mg/kg 0.5 <0.5 Ethion mg/			Malathion	mg/kg	0.2	<0.2
Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Azinphos-methyl (Surrogate) % - 1119 Bull Staffshion mg/kg 0.5 <0.5 Dimethoate mg/kg 0.5 <0.5 Dimethoate mg/kg 0.5 <0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Chloryrifos (Chloryrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl (Parathion) mg/kg 0.5 <0.5 Methidathion mg/kg 0.2 <0.2 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Cols Cols mg/kg 0.2 <0.2 Cols mg/kg			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Surrogates 2-fluorobiphenyl (Surrogate) % - 109 d14-p-terphenyl (Surrogate) % - 111 LB215551.001 Dichlorvos mg/kg 0.5 <0.5 Dimethoate mg/kg 0.5 <0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Bromophos Ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl (Brathion mg/kg 0.2 <0.2 Bromophos Ethyl (Brathion mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Methidathion mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Azinphos-methyl (A			Bromophos Ethyl	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Surrogates 2-fluorobiphenyl (Surrogate) % - 109 d14-p-terphenyl (Surrogate) % - 111 LB215551.001 Dichlorvos mg/kg 0.5 <0.5			Methidathion	mg/kg	0.5	<0.5
Surrogates 2-fluorobiphenyl (Surrogate) % - 109 d14-p-terphenyl (Surrogate) % - 111 LB215551.001 Dichlorvos mg/kg 0.5 <0.5			Ethion	mg/kg	0.2	<0.2
Mathion			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Dichlorvos mg/kg 0.5 <0.5 Dimethoate mg/kg 0.5 <0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.2 <0.2 Ethion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2		Surrogates	2-fluorobiphenyl (Surrogate)	%	-	109
Dimethoate mg/kg 0.5 <0.5 Diazinon (Dimpylate) mg/kg 0.5 <0.5			d14-p-terphenyl (Surrogate)	%	-	111
Diazinon (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2	LB215551.001		Dichlorvos	mg/kg	0.5	<0.5
Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2			Dimethoate	mg/kg	0.5	<0.5
Malathion mg/kg 0.2 <0.2 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2			Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2			Fenitrothion	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2			Malathion	mg/kg	0.2	<0.2
Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2			Bromophos Ethyl	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion) mg/kg 0.2 <0.2			Methidathion	mg/kg	0.5	<0.5
			Ethion	mg/kg	0.2	<0.2
Surrogates 2-fluorobiphenyl (Surrogate) % - 90			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
		Surrogates	2-fluorobiphenyl (Surrogate)	%	-	90
d14-p-terphenyl (Surrogate) % - 94			d14-p-terphenyl (Surrogate)	%	-	94

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB215550.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	<u>-</u>	126
		2-fluorobiphenyl (Surrogate)	%	<u>-</u>	109
		d14-p-terphenyl (Surrogate)	%	<u>-</u>	111
LB215551.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1

18/12/2020 Page 17 of 38

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB215551.001	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	94
	2-fluorobiphenyl (Surrogate)	%	-	90
	d14-p-terphenyl (Surrogate)	%	-	94

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB215550.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	=	100
LB215551.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	89

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB215534.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0
LB215535.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB215512.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number Parameter Units LOR

18/12/2020 Page 18 of 38

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB215550.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110
LB215551.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB215735.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	μg/L	200	<200

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB215541.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	97
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	82
	Totals	Total BTEX	mg/kg	0.6	<0.6
LB215543.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	98
		d8-toluene (Surrogate)	%	-	95
		Bromofluorobenzene (Surrogate)	%	-	89
	Totals	Total BTEX	mg/kg	0.6	<0.6

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB215647.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	103

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB215541.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	97
LB215543.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	98

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Number Parameter Units LOR

18/12/2020 Page 19 of 38

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433

	•				
Sample Number		Parameter	Units	LOR	Result
LB215647.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	103

18/12/2020 Page 20 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214678.009	LB215506.014	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0
SE214736.001	LB215506.016	Mercury	μg/L	0.0001	-0.00054	0.00086	200	178

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.010	LB215542.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE214668.019	LB215542.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE214668.024	LB215544.014	Mercury	mg/kg	0.05	<0.05	< 0.05	200	0
SE214668.032	LB215544.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215560.011	% Moisture	%w/w	1	13.6	13.5	37	1
SE214668.015	LB215560.022	% Moisture	%w/w	1	7.0	6.7	45	4
SE214668.025	LB215561.011	% Moisture	%w/w	1	6.8	6.4	45	6
SE214668.034	LB215561.020	% Moisture	%w/w	1	<1.0	<1.0	200	0

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

	OII								-[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E214668.005	LB215550.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.16	30	24
E214668.015	LB215550.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0

18/12/2020 Page 21 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	<u> </u>		Devenuetor	l luita	LOB	Ovininal		Critorio 9/	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE214668.015	LB215550.027		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.16	30	17
SE214668.025	LB215551.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone		0.1	<0.1	<0.1	200	0
				mg/kg	-		<0.1		0
			Isodrin	mg/kg	0.1	<0.1		200	
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.14	30	2

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215550.014	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1

18/12/2020 Page 22 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215550.014	Surrogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	4
SE214668.015	LB215550.027		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
SE214668.025	LB215551.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	12

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215550.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	4
SE214668.015	LB215550.027		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0

18/12/2020 Page 23 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Duplicate LB215550.027		Parameter	Units	LOR	Original	Duplicate	/()	
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	RPD %
LDZ 10000.021								0
								0
								0
								0
								0
		_ ·						0
								0
			·					0
								0
								0
								0
								0
								0
								0
								0
								0
								0
	Surrogates							5
	Surrogates			-				3
								0
I P215551 014								0
LB215551.014		·						0
			·					0
								0
			·					0
								0
				-				0
								0
								0
								0
								0
								0
								0
								0
								0
								0
								0
								0
								0
		Carolinogerilo I Allia, Dal I L.Q >LON-0						0
		Carcinogenic PAHs, RaP TEO < LOR=LOR						0
		Odiomogenio i Airis, Dai TEQ >EON-EON						0
		Carcinogenic DAHe, Bap TEO < I OP=I OP/2		-				0
		Carolingerile PATIS, Dar TEQ NEON-LON/2						0
		Total DALI (19)						
	Currocatas			0.8			30	10
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.6		
		2-fluorobiphenyl (Surrogate)	mg/kg	_	0.4	0.4	30	2
	LB215551.014		2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b§)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor=0 <lor="LOR/2</td" bap="" carcinogenic="" pahs,="" teq=""><td> Phenanthrene mg/kg </td><td> Phenanthrene mg/kg 0.1 </td><td>Phenamitrene mg/kg 0.1 <0.1 Amfracone mg/kg 0.1 <0.1</td> Fluoramithene mg/kg 0.1 <0.1</lor=0>	Phenanthrene mg/kg	Phenanthrene mg/kg 0.1	Phenamitrene mg/kg 0.1 <0.1 Amfracone mg/kg 0.1 <0.1	Phenanthene mg/kg 0.1	Penandritree mg/kg 0.1 4.01 4.01 2.00 Anthriscene mg/kg 0.1 4.01 4.01 2.00 Piyene mg/kg 0.1 4.01 4.01 2.00 Piyency mg/kg 0.1 4.01 4.01 3.00 Piyency mg/kg 0.1

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215550.014	Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0

18/12/2020 Page 24 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (continued) Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215550.014		Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	24
SE214668.015	LB215550.027		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	17
SE214668.025	LB215551.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg		0	0	30	2

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 <0.0 0	Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
Chromium, Cr mg/kg 0.5 12 14 34 16	SE214668.010	LB215534.014	Arsenic, As	mg/kg	1	2	2	86	28
Copper, Cu			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
Nickel, Ni			Chromium, Cr	mg/kg	0.5	12	14	34	16
Lead, Pb mg/kg 1 12 14 38 19 Zinc, Zn mg/kg 2 24 21 39 12 Arsenic, As mg/kg 1 2 2 2 39 30 Cadmium, Cd mg/kg 0.5 0.5 0.5 0.0 Chromium, Cr mg/kg 0.5 0.5 0.5 0.0 Chromium, Cr mg/kg 0.5 0.5 0.5 0.0 Chromium, Cr mg/kg 0.5 0.1 10 0.5 0.0 Lead, Pb mg/kg 0.5 0.1 15 14 37 0.0 Clad, Pb mg/kg 0.5 0.0 0.0 Cladmium, Cd mg/kg 0.1 0.0 0.0 Cladmium, Cd mg/kg 0.1 0.0 0.0 Cladmium, Cr mg/kg 0.5 0.0 0.0 Cladmium, Cr mg/kg 0.5 0.0 0.0 Cladmium, Cr mg/kg 0.5 0.0 0.0 Clomium, Cr mg/kg 0.5 0.0 0.0 Clomium, Cr mg/kg 0.5 0.0 0.0 Clomium, Cr mg/kg 0.5 0.0 0.0 Clode, Pb mg/kg 0.5 0.0 0.0 Clode, Pb mg/kg 0.5 0.0 0.0 Clode, Pb mg/kg 0.5 0.0 0.0 Clodmium, Cr mg/kg 0.5 0.0 0.0			Copper, Cu	mg/kg	0.5	5.3	5.4	39	2
SE214668.019			Nickel, Ni	mg/kg	0.5	6.7	6.9	37	3
SE214688.019 LB215534.024 Arsenic, As mg/kg 1 2 2 83 6 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.0 0 0 0 0 0 0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0			Lead, Pb	mg/kg	1	12	14	38	19
Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 <0.3 <0.0 0			Zinc, Zn	mg/kg	2	24	21	39	12
Chromium, Cr mg/kg 0.5 25 24 32 6	SE214668.019	LB215534.024	Arsenic, As	mg/kg	1	2	2	83	6
Copper, Cu mg/kg 0.5 7.1 7.7 37 8 Nickel, Ni mg/kg 0.5 11 10 35 12 Lead, Pb mg/kg 1 15 14 37 6 Zinc, Zin mg/kg 2 47 40 35 16 SE214668.024 LB215535.014 Arsenic, As mg/kg 1 2 1 95 7 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.0 Chromium, Cr mg/kg 0.5 9.2 8.9 36 4 Copper, Cu mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 12 13 38 5 Lead, Pb mg/kg 1 12 13 38 5 SE214668.032 LB215535.023 Arsenic, As mg/kg 0.5 3 3 3 3 4 1 Copper, Cu mg/kg 0.5 5.6 5.7 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
Nickel, Ni mg/kg 0.5 11 10 35 12 Lead, Pb mg/kg 1 15 14 37 6 Zinc, Zn mg/kg 2 47 40 35 16 SE214668.024 LB215536.014 Arsenic, As mg/kg 0.5 22 47 40 35 7 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 20 0 Chromium, Cr mg/kg 0.5 22 22 32 1 Copper, Cu mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 2 37 37 35 0 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 12 13 34 1 Cadmium, Cd mg/kg 0.5 5.3 5.4 39 2 Chromium, Cr mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 0.5 5.6 5.7 39 2			Chromium, Cr	mg/kg	0.5	25	24	32	6
Lead, Pb mg/kg 1 15 14 37 6 Zinc, Zn mg/kg 2 47 40 35 16 SE214668.024 LB215535.014 Arsenic, As mg/kg 1 2 1 95 7 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 200 0 Chromium, Cr mg/kg 0.5 22 22 32 1 Copper, Cu mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 1 2 2 85 3 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.5 5.3 5.4 39 2 Chromium, Cr mg/kg 0.5 5.6 5.7 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12 Lead, Pb mg/kg 1 12 13 13 13 13 13 13			Copper, Cu	mg/kg	0.5	7.1	7.7	37	8
Zinc, Zn Mg/kg 2 47 40 35 16 SE214668.024 LB215535.014 Arsenic, As mg/kg 1 2 1 95 7 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 <0.0 0 Chromium, Cr mg/kg 0.5 22 22 32 1 Copper, Cu mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 12 13 38 5 SE214668.032 LB21535.023 LB21535.023 Arsenic, As mg/kg 0.5 32 37 37 35 0 Chromium, Cd mg/kg 0.5 3 <0.3 <0.3 <0.3 <0.3 <0.3 Cadmium, Cd mg/kg 0.5 3 <0.3 <0.3 <0.3 Cadmium, Cd mg/kg 0.5 5.3 5.4 39 2 Chromium, Cr mg/kg 0.5 5.3 5.4 39 2 Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 0.5 5.6 5.7 39 2			Nickel, Ni	mg/kg	0.5	11	10	35	12
SE214668.024 LB215535.014 Arsenic, As mg/kg 1 2 1 95 7 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 200 0 Chromium, Cr mg/kg 0.5 22 22 32 1 Copper, Cu mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 1 1 1 1 38 5 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.1 2 2 85 3 Chromium, Cr mg/kg 0.5 13 13 34 1 Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2			Lead, Pb	mg/kg	1	15	14	37	6
Cadmium, Cd mg/kg 0.3 <0.3 <0.3 200 0			Zinc, Zn	mg/kg	2	47	40	35	16
Chromium, Cr mg/kg 0.5 22 22 32 1	SE214668.024	LB215535.014	Arsenic, As	mg/kg	1	2	1	95	7
Copper, Cu mg/kg 0.5 9.2 8.9 36 4 Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 2 37 37 35 0 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 Chromium, Cr mg/kg 0.5 13 13 34 1 Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12 Lead, Pb mg/kg 1 11 12 13 13 Lead, Pb mg/kg 1 11 12 13 Lead, Pb mg/kg 1 12 13 Lead, Pb mg/kg 1 13 13 Lead, Pb mg/kg 1 14 14 14 Lead, Pb mg/kg 1 14 14 14 Lead, Pb mg/kg 14 14 14 14 Lead, Pb mg/kg 14 14 14 14 Lead, Pb mg/kg 14 14 14 14 14 Lead, Pb mg/kg 14 14 14 14 14 14 Lead, Pb mg/kg 14 14 14 14 14			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
Nickel, Ni mg/kg 0.5 7.2 7.1 37 2 Lead, Pb mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 2 37 37 35 0 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.3 <0.3			Chromium, Cr	mg/kg	0.5	22	22	32	1
Lead, Pb mg/kg 1 12 13 38 5 Zinc, Zn mg/kg 2 37 37 35 0 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.3 <0.3			Copper, Cu	mg/kg	0.5	9.2	8.9	36	4
Zinc, Zn mg/kg 2 37 37 35 0 SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.3 <0.3			Nickel, Ni	mg/kg	0.5	7.2	7.1	37	2
SE214668.032 LB215535.023 Arsenic, As mg/kg 1 2 2 85 3 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 20.0 0 Chromium, Cr mg/kg 0.5 13 13 34 1 Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12			Lead, Pb	mg/kg	1	12	13	38	5
Cadmium, Cd mg/kg 0.3 <0.3 <0.3 200 0 Chromium, Cr mg/kg 0.5 13 13 34 1 Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12			Zinc, Zn	mg/kg	2	37	37	35	0
Chromium, Cr mg/kg 0.5 13 13 34 1 Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12	SE214668.032	LB215535.023	Arsenic, As	mg/kg	1	2	2	85	3
Copper, Cu mg/kg 0.5 5.3 5.4 39 2 Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
Nickel, Ni mg/kg 0.5 5.6 5.7 39 2 Lead, Pb mg/kg 1 11 12 39 12			Chromium, Cr	mg/kg	0.5	13	13	34	1
Lead, Pb mg/kg 1 11 12 39 12			Copper, Cu	mg/kg	0.5	5.3	5.4	39	2
			Nickel, Ni	mg/kg	0.5	5.6	5.7	39	2
Zinc, Zn mg/kg 2 11 11 48 1			Lead, Pb	mg/kg	1	11	12	39	12
			Zinc, Zn	mg/kg	2	11	11	48	1

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214678.005	LB215512.014	Arsenic, As	μg/L	1	<1	<1	184	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	<1	<1	200	0

18/12/2020 Page 25 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Trace Metals (Dissolved) in Water by ICPMS (continued)

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214678.005	LB215512.014	Lead, Pb	μg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	170	160	18	2
SE214736.001	LB215512.031	Arsenic, As	μg/L	1	1.504	1.486	82	1
		Cadmium, Cd	μg/L	0.1	0.011	0.012	200	0
		Chromium, Cr	μg/L	1	0.121	0.12	200	0
		Copper, Cu	μg/L	1	1.393	1.481	85	6
		Lead, Pb	μg/L	1	0.443	0.485	200	0
		Nickel, Ni	μg/L	1	10.162	10.272	25	1
		Zinc, Zn	μg/L	5	66.136	65.341	23	1

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215550.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE214668.015	LB215550.027		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE214668.025	LB215551.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	46	77	103	50
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	94	164	4
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE214668.030	LB215551.023		TRH C10-C14	mg/kg	20	<20	20	178	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	20	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215541.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.9	11.2	50	5

18/12/2020 Page 26 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215541.014	Surrogates	d8-toluene (Surrogate)	mg/kg	-	12.1	10.9	50	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.3	11.6	50	2
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE214668.015	LB215541.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.5	11.3	50	8
			d8-toluene (Surrogate)	mg/kg	-	10.4	11.6	50	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.7	9.5	50	20
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE214668.025	LB215543.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.8	9.2	50	4
			d8-toluene (Surrogate)	mg/kg	-	8.8	9.2	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	7.4	50	4
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE214668.032	LB215543.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	0.0030668524	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.0024724862	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0.0004089512	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.0012473797	200	0
			o-xylene	mg/kg	0.1	<0.1	0.0005915041	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.0013508529	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	8.8779000362	50	2
			d8-toluene (Surrogate)	mg/kg	-	9.2	8.8915973371	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	6.8588932311	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	0.0018388839	200	0
			Total BTEX	mg/kg	0.6	<0.6	0	200	0

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.005	LB215541.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.9	11.2	30	5
			d8-toluene (Surrogate)	mg/kg	-	12.1	10.9	30	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.3	11.6	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE214668.015	LB215541.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.5	11.3	30	8
			d8-toluene (Surrogate)	mg/kg	-	10.4	11.6	30	10
			Bromofluorobenzene (Surrogate)	mg/kg	-	11.7	9.0	30	25
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE214668.025	LB215543.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.8	9.2	30	4
			d8-toluene (Surrogate)	mg/kg	-	8.8	9.2	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	7.4	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

18/12/2020 Page 27 of 38

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENVIAN433

Voidalio i Galoicali	i riyarooarbons iii oo	ii (oorianaoa)					Woul	od. ME-(/10)	'man baran
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE214668.032	LB215543.025		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	8.8779000362	30	2
			d8-toluene (Surrogate)	mg/kg	-	9.2	8.8915973371	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.1	6.8588932311	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0.0030668524	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	0	200	0

18/12/2020 Page 28 of 38

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil	Method: ME-(AU)-IENVIAN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215542.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	106
LB215544.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	104

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215550.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	114
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	110
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	106
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	110
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	105
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	92
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	99
LB215551.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	104
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	92
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	95
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	92
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	94
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	98
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	92

OP Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215550.002		Dichlorvos	mg/kg	0.5	2.3	2	60 - 140	115
		Diazinon (Dimpylate)	mg/kg	0.5	2.5	2	60 - 140	125
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.3	2	60 - 140	116
		Ethion	mg/kg	0.2	1.7	2	60 - 140	86
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	85
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	79
LB215551.002		Dichlorvos	mg/kg	0.5	2.4	2	60 - 140	120
		Diazinon (Dimpylate)	mg/kg	0.5	2.4	2	60 - 140	122
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.5	2	60 - 140	123
		Ethion	mg/kg	0.2	1.8	2	60 - 140	92

mg/kg

mg/kg

0.4

0.5

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Surrogates

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Method: ME-(AU)-[ENV]AN420

86

40 - 130

40 - 130

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215550.002		Naphthalene	mg/kg	0.1	4.8	4	60 - 140	119
		Acenaphthylene	mg/kg	0.1	4.7	4	60 - 140	117
		Acenaphthene	mg/kg	0.1	5.0	4	60 - 140	124
		Phenanthrene	mg/kg	0.1	4.8	4	60 - 140	120
		Anthracene	mg/kg	0.1	4.7	4	60 - 140	117
		Fluoranthene	mg/kg	0.1	4.2	4	60 - 140	105
		Pyrene	mg/kg	0.1	4.9	4	60 - 140	122
		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	101
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	93
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	85
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	79
LB215551.002		Naphthalene	mg/kg	0.1	5.0	4	60 - 140	124
		Acenaphthylene	mg/kg	0.1	5.2	4	60 - 140	131
		Acenaphthene	mg/kg	0.1	4.6	4	60 - 140	115
		Phenanthrene	mg/kg	0.1	4.8	4	60 - 140	119
		Anthracene	mg/kg	0.1	4.8	4	60 - 140	119
		Fluoranthene	mg/kg	0.1	4.8	4	60 - 140	120
		Pyrene	mg/kg	0.1	4.9	4	60 - 140	122
		Benzo(a)pyrene	mg/kg	0.1	4.8	4	60 - 140	119
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86

PCBs in Soil

Sample Number Parameter Units LOR

Method: ME-(AU)-[ENV]AN420

18/12/2020 Page 29 of 38

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PCBs in Soil (continued)	Method: ME-(AU)-IENVIAN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215550.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	106
LB215551.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	107

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215534.002	Arsenic, As	mg/kg	1	360	318.22	80 - 120	115
	Cadmium, Cd	mg/kg	0.3	4.7	5.41	80 - 120	86
	Chromium, Cr	mg/kg	0.5	41	38.31	80 - 120	107
	Copper, Cu	mg/kg	0.5	310	290	80 - 120	106
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	103
	Lead, Pb	mg/kg	1	94	89.9	80 - 120	104
	Zinc, Zn	mg/kg	2	290	273	80 - 120	104
LB215535.002	Arsenic, As	mg/kg	1	360	318.22	80 - 120	114
	Cadmium, Cd	mg/kg	0.3	4.4	5.41	80 - 120	82
	Chromium, Cr	mg/kg	0.5	40	38.31	80 - 120	105
	Copper, Cu	mg/kg	0.5	310	290	80 - 120	107
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	103
	Lead, Pb	mg/kg	1	92	89.9	80 - 120	103
	Zinc, Zn	mg/kg	2	280	273	80 - 120	104

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215512.002	Arsenic, As	μg/L	1	19	20	80 - 120	95
	Cadmium, Cd	μg/L	0.1	21	20	80 - 120	105
	Chromium, Cr	μg/L	1	22	20	80 - 120	109
	Copper, Cu	μg/L	1	22	20	80 - 120	112
	Lead, Pb	μg/L	1	19	20	80 - 120	95
	Nickel, Ni	μg/L	1	22	20	80 - 120	109
	Zinc, Zn	μg/L	5	21	20	80 - 120	107

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215550.002		TRH C10-C14	mg/kg	20	41	40	60 - 140	103
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	100
	TRH F Bands	TRH >C10-C16	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	100
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
LB215551.002		TRH C10-C14	mg/kg	20	44	40	60 - 140	110
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16	mg/kg	25	44	40	60 - 140	110
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215735.002		TRH C10-C14	μg/L	50	790	1200	60 - 140	66
		TRH C15-C28	μg/L	200	1100	1200	60 - 140	90
		TRH C29-C36	μg/L	200	1300	1200	60 - 140	105
	TRH F Bands	TRH >C10-C16	μg/L	60	1200	1200	60 - 140	102
		TRH >C16-C34 (F3)	μg/L	500	1300	1200	60 - 140	106
		TRH >C34-C40 (F4)	μg/L	500	620	600	60 - 140	104

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215541.002	Monocyclic	Benzene	mg/kg	0.1	4.0	5	60 - 140	81
	Aromatic	Toluene	mg/kg	0.1	4.0	5	60 - 140	81
		Ethylbenzene	mg/kg	0.1	4.4	5	60 - 140	88
		m/p-xylene	mg/kg	0.2	8.8	10	60 - 140	88
		o-xylene	mg/kg	0.1	4.4	5	60 - 140	88
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.1	10	70 - 130	101

18/12/2020 Page 30 of 38

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)	Method: ME-(AU)-IENVIAN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215541.002	Surrogates	d8-toluene (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
LB215543.002	Monocyclic	Benzene	mg/kg	0.1	3.6	5	60 - 140	71
	Aromatic	Toluene	mg/kg	0.1	3.6	5	60 - 140	71
		Ethylbenzene	mg/kg	0.1	3.9	5	60 - 140	77
		m/p-xylene	mg/kg	0.2	7.8	10	60 - 140	78
		o-xylene	mg/kg	0.1	3.9	5	60 - 140	77
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	10	70 - 130	92
		d8-toluene (Surrogate)	mg/kg	-	8.9	10	70 - 130	89
		Bromofluorobenzene (Surrogate)	mg/kg	-	8.6	10	70 - 130	86

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215647.002	Monocyclic	Benzene	μg/L	0.5	48	45.45	60 - 140	106
	Aromatic	Toluene	μg/L	0.5	48	45.45	60 - 140	106
		Ethylbenzene	μg/L	0.5	48	45.45	60 - 140	106
		m/p-xylene	μg/L	1	96	90.9	60 - 140	106
		o-xylene	μg/L	0.5	49	45.45	60 - 140	108
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.3	10	60 - 140	103
		d8-toluene (Surrogate)	μg/L	-	10.3	10	70 - 130	103
		Bromofluorobenzene (Surrogate)	μg/L	-	10.3	10	70 - 130	103

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215541.002		TRH C6-C10	mg/kg	25	77	92.5	60 - 140	83
		TRH C6-C9	mg/kg	20	66	80	60 - 140	83
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	51	62.5	60 - 140	82
LB215543.002		TRH C6-C10	mg/kg	25	78	92.5	60 - 140	84
		TRH C6-C9	mg/kg	20	66	80	60 - 140	83
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	10	70 - 130	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	8.6	10	70 - 130	86
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	55	62.5	60 - 140	88
	vrnrbanus	TRIT CO-C TO TITILIUS BTEA (FT)	mg/kg	20	55	02.5	00 - 140	00

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB215647.002		TRH C6-C10	μg/L	50	990	946.63	60 - 140	105
		TRH C6-C9	μg/L	40	880	818.71	60 - 140	107
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.3	10	60 - 140	103
		d8-toluene (Surrogate)	μg/L	-	10.3	10	70 - 130	103
		Bromofluorobenzene (Surrogate)	μg/L	-	10.3	10	70 - 130	103
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	700	639.67	60 - 140	110

18/12/2020 Page 31 of 38

QC Sample Sample Number Parameter

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Units LOR Result Original Spike Recovery%

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214668.033	LB215506.004	Mercury	mg/L	0.0001	0.0017	<0.0001	0.008	86

OC Pesticides in Soil Method: ME-(AU)-[ENVIAN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE214668.016	LB215551.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	111
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	99
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	102
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	_	_
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1		
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2		
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1		
			Alpha Chlordane	·	0.1	<0.1	<0.1		
			·	mg/kg	0.1	<0.1	<0.1	-	
			trans-Nonachlor	mg/kg					
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	99
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	98
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	100
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.14	-	91
SE214745.021	LB215550.004	 	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	_
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	123
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	117
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	- 117
			Delta BHC		0.1	0.2	<0.1	0.2	115
				mg/kg	0.1	<0.1	<0.1	- 0.2	- 115
			Heptachlor epoxide	mg/kg	_				
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	115
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	112
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	91
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	_
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1		
				mg/kg	0.1	-0.1	-0.1		
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-

18/12/2020 Page 32 of 38

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214745.021	LB215550.004		Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	-	108

DP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery'
SE214668.016	LB215551.004		Dichlorvos	mg/kg	0.5	1.6	<0.5	2	79
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	2.1	<0.5	2	103
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.5	<0.2	2	125
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.7	<0.2	2	87
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	7.9	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	81
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	77
SE214745.021	LB215550.004		Dichlorvos	mg/kg	0.5	2.2	<0.5	2	108
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	2.3	<0.5	2	113
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.3	<0.2	2	116
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.8	<0.2	2	90
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	8.5	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	90
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	83

PAH (Polynuclear Aromatic Hydrocarbons) in Soil QC Sample Sample Number

Method: ME-(AU)-[ENV]AN420

LOR Result Original Spike Recovery%

SE214668.016	LB215551.004	Naphthalene	mg/kg	0.1	3.8	<0.1	4	95
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	3.8	<0.1	4	96
		Acenaphthene	mg/kg	0.1	3.8	<0.1	4	94
		Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	3.5	<0.1	4	88
		Anthracene	mg/kg	0.1	3.6	<0.1	4	90
		Fluoranthene	mg/kg	0.1	4.2	<0.1	4	104
		Pyrene	mg/kg	0.1	3.8	<0.1	4	96
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
		Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(a)pyrene	mg/kg	0.1	3.6	<0.1	4	89
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.6</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	3.6	<0.2	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.7</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	3.7	<0.3	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.6</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.6	<0.2	-	-
		Total PAH (18)	mg/kg	0.8	30	<0.8	-	-
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	100
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	81
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	77

18/12/2020 Page 33 of 38

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214745.021	LB215550.004		Naphthalene	mg/kg	0.1	4.7	0.1	4	113
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.9	0.2	4	117
			Acenaphthene	mg/kg	0.1	4.9	<0.1	4	123
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.6	0.5	4	103
			Anthracene	mg/kg	0.1	4.9	0.3	4	115
			Fluoranthene	mg/kg	0.1	4.4	1.8	4	66
			Pyrene	mg/kg	0.1	5.4	2.1	4	82
			Benzo(a)anthracene	mg/kg	0.1	0.4	1.0	-	-
			Chrysene	mg/kg	0.1	0.5	1.2	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.6	1.6	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	0.4	0.5	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.6	1.1	4	87
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	0.6	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	0.3	0.5	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.8</td><td>1.5</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.8	1.5	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.9</td><td>1.6</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.9	1.6	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.8</td><td>1.5</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.8	1.5	-	-
	_		Total PAH (18)	mg/kg	0.8	41	11	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	96
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	90
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	83

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number Parameter Units LOR Result Original Spike Recovery%										, imitabatimo
Arochlor 1221 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
Arochlor 1232 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	SE214668.016	LB215551.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1242 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1248 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1254 mg/kg 0.2 <0.2 <0.2 <0.2				Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1260 mg/kg 0.2 0.4 0.2 0.4 106 Arochlor 1262 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1262 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1268 mg/kg 0.2 <0.2 <0.2 <-0.2 Total PCBs (Arochlors) mg/kg 1 <1 <1 <1 <1 Total PCBs (Arochlors) mg/kg 1 <1 <1 <1 <1 <- Total PCBs (Arochlor 1216 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 Total Arochlor 1221 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	106
Total PCBs (Arochlors) mg/kg 1 <1 <1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1				Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg				Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
SE214745.021 LB215550.004 Arochlor 1016 mg/kg				Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
Arochlor 1221 mg/kg 0.2 < 0.2 < 0.2 - - Arochlor 1232 mg/kg 0.2 < 0.2			Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	91
Arochlor 1232 mg/kg 0.2 < 0.2 < 0.2 - 0.2 Arochlor 1242 mg/kg 0.2 < 0.2	SE214745.021	LB215550.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1242 mg/kg 0.2 < 0.2 < 0.2 - - Arochlor 1248 mg/kg 0.2 < 0.2				Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1248 mg/kg 0.2 < 0.2 < 0.2 - - Arochlor 1254 mg/kg 0.2 < 0.2				Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1254 mg/kg 0.2 < 0.2 < 0.2 - - Arochlor 1260 mg/kg 0.2 0.4 < 0.2				Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1260 mg/kg 0.2 0.4 <0.2 0.4 109 Arochlor 1262 mg/kg 0.2 <0.2				Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1262 mg/kg 0.2 <0.2 <0.2 - - Arochlor 1268 mg/kg 0.2 <0.2				Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1268 mg/kg 0.2 < 0.2 < 0.2 - - Total PCBs (Arochlors) mg/kg 1 <1				Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	109
Total PCBs (Arochlors) mg/kg 1 <1 <1				Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
				Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg - 0 0 - 108				Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
			Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	108

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214668.001	LB215534.004	Arsenic, As	mg/kg	1	47	2	50	90
		Cadmium, Cd	mg/kg	0.3	42	<0.3	50	84
		Chromium, Cr	mg/kg	0.5	56	11	50	89
		Copper, Cu	mg/kg	0.5	50	6.9	50	85
		Nickel, Ni	mg/kg	0.5	51	6.3	50	89
		Lead, Pb	mg/kg	1	80	18	50	124
		Zinc, Zn	mg/kg	2	76	43	50	66 ④
SE214748.001	LB215535.004	Arsenic, As	mg/kg	1	53	5.93566205384	50	94
		Cadmium, Cd	mg/kg	0.3	45	0.05098230490	50	91

18/12/2020 Page 34 of 38

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214748.001	LB215535.004	Chromium, Cr	mg/kg	0.5	58	10.05814787507	50	96
		Copper, Cu	mg/kg	0.5	65	19.50545220810	50	91
		Nickel, Ni	mg/kg	0.5	56	9.91653036146	50	93
		Lead, Pb	mg/kg	1	60	15.84416742286	50	89
		Zinc, Zn	mg/kg	2	77	38.91507656533	50	76

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214668.033	LB215512.004	Arsenic, As	μg/L	1	19	<1	20	97
		Cadmium, Cd	μg/L	0.1	21	<0.1	20	105
		Chromium, Cr	μg/L	1	23	<1	20	112
		Copper, Cu	μg/L	1	24	<1	20	115
		Lead, Pb	μg/L	1	19	<1	20	95
		Nickel, Ni	μg/L	1	22	<1	20	111
		Zinc, Zn	μg/L	5	24	<5	20	110
SE214736.001	LB215512.030	Arsenic, As	μg/L	1	26	1.504	20	122
		Cadmium, Cd	μg/L	0.1	21	0.011	20	106
		Chromium, Cr	μg/L	1	22	0.121	20	108
		Copper, Cu	μg/L	1	22	1.393	20	101
		Lead, Pb	μg/L	1	19	0.443	20	93
		Nickel, Ni	μg/L	1	30	10.162	20	100
		Zinc, Zn	μg/L	5	86	66.136	20	99

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Tru (Total 11000	Wordbio Hydrodarbo	110) 111 0011					Wou	iou. MIL-(MC	/)-[E144]F14400
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214668.016	LB215551.004		TRH C10-C14	mg/kg	20	44	<20	40	110
			TRH C15-C28	mg/kg	45	<45	<45	40	108
			TRH C29-C36	mg/kg	45	<45	<45	40	98
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	46	<25	40	115
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	46	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	103
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
SE214745.021	LB215550.004		TRH C10-C14	mg/kg	20	46	<20	40	115
			TRH C15-C28	mg/kg	45	48	<45	40	120
			TRH C29-C36	mg/kg	45	<45	<45	40	105
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	43	<25	40	108
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	38	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	130
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214668.016	LB215543.004	Monocyclic	Benzene	mg/kg	0.1	3.6	<0.1	5	73
		Aromatic	Toluene	mg/kg	0.1	3.6	<0.1	5	72
			Ethylbenzene	mg/kg	0.1	3.9	<0.1	5	78
			m/p-xylene	mg/kg	0.2	7.9	<0.2	10	78
			o-xylene	mg/kg	0.1	3.9	<0.1	5	78
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	8.9	10	92
			d8-toluene (Surrogate)	mg/kg	-	9.2	8.8	10	92
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	7.8	10	83
		Totals	Total Xylenes	mg/kg	0.3	12	<0.3	-	-
			Total BTEX	mg/kg	0.6	23	<0.6	-	-
SE214745.021	LB215541.004	Monocyclic	Benzene	mg/kg	0.1	3.7	<0.1	5	73
		Aromatic	Toluene	mg/kg	0.1	3.7	<0.1	5	73
			Ethylbenzene	mg/kg	0.1	4.0	<0.1	5	80

18/12/2020 Page 35 of 38

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Original	Spike	Recovery%
<0.2	10	80
<0.1	5	80
<0.1	-	-
9.3	10	93

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LUK	Result	Originai	Бріке	Recovery%
SE214745.021	LB215541.004	Monocyclic	m/p-xylene	mg/kg	0.2	8.1	<0.2	10	80
		Aromatic	o-xylene	mg/kg	0.1	4.0	<0.1	5	80
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	9.3	10	93
			d8-toluene (Surrogate)	mg/kg	-	9.3	9.3	10	93
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	7.8	10	83
		Totals	Total Xylenes	mg/kg	0.3	12	<0.3	-	-
			Total BTEX	mg/kg	0.6	23	<0.6	-	-

Volatile Petroleum Hydrocarbons in Soil						Method: ME-(AU)-[ENV]AN433			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE214668.016	LB215543.004		TRH C6-C10	mg/kg	25	80	<25	92.5	86
			TRH C6-C9	mg/kg	20	68	<20	80	85
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.2	8.9	10	92
			d8-toluene (Surrogate)	mg/kg	-	9.2	8.8	10	92
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	7.8	-	83
		VPH F	Benzene (F0)	mg/kg	0.1	3.6	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	57	<25	62.5	91
SE214745.021	LB215541.004		TRH C6-C10	mg/kg	25	72	<25	92.5	77
			TRH C6-C9	mg/kg	20	62	<20	80	77
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	9.3	10	93
			d8-toluene (Surrogate)	mg/kg	-	9.3	9.3	10	93
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	7.8	-	83
		VPH F	Benzene (F0)	mg/kg	0.1	3.7	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	48	<25	62.5	77

18/12/2020 Page 36 of 38

MATRIX SPIKE DUPLICATES

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = $100 \times SDL / Mean + LR$

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

18/12/2020 Page 37 of 38

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

FOOTNOTES

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- ® Recovery failed acceptance criteria due to sample heterogeneity.
- (nequired dilution).
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

18/12/2020 Page 38 of 38

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix H - QA/QC Assessment

H1 QUALITY CONTROL PROGRAM

H1.1 PROJECT QA/QC PROTOCOLS

The overall quality assurance comprises an assessment of the reliability of the field procedures and the laboratory results against standard industry practices, documented sampling and analysis plans or remediation action plans. A summary of the project QA/QC protocols to be followed during the investigation works is presented in **Table H-1.**

Table H-1 QA/QC Protocols

Task	Description	Project
Field QA/QC		
General	Work was undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were generally collected directly off the drilling rods or hand auger. Soil samples were placed in 250 gram glass jars, which were filled to minimise headspace, and sealed using Teflon- coated lids.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes
Soil screening with PID	The PID was serviced and calibrated as per the manufacturer requirements. PID calibrated at the beginning and end of each day of fieldwork.	Yes
Rinsate Samples	One rinsate blank would be collected per sampling event and analysed for the primary contaminants. All results should be non-detect.	The results for rinsate samples were reported below laboratory LOR.
Transport	Samples were stored in ice-brick cooled cooler box and transported to the primary and secondary laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation, and transport duration.	Yes
Trip Blanks	Trip blank samples were prepared and analysed by the primary laboratory for BTEX and naphthalene. Analytical results for trip blank samples below the laboratory PQLs, indicate that ideal sample transport and handling conditions are achieved.	Yes

Task	Description	Project
Trip Spikes	Trip spike samples were prepared and analysed by the primary laboratory for BTEX. Acceptance criteria of BTEX spike recoveries are between 70% - 130%.	Yes
QA samples	Field and laboratory QA samples analysed as follows: Intra-laboratory and inter-laboratory duplicate samples will be collected at a rate of 1 pair per 20 primary samples	Yes See Table H-2 Calculated RPD (Table B.3) values between most primary and field duplicate samples are within the acceptance criteria (Section H1.2) with the exception of the following:
		Soil - Blind Field Triplicate (BFT): - Arsenic: 66.67% For the arsenic values analytical results for both the Primary and BFD were less than ten times the laboratory PQL, therefore the RPD exceedances are deemed acceptable.
Laboratory QA/QC		
Laboratory analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs	Yes SGS - primary laboratory Envirolab - secondary laboratory The laboratory QA/QC reports are included in Appendix G.
	Appropriate detection limits were used for the analyses to be undertaken.	Practical Quantitation Limits for all tested parameters during the assessment of soils are presented in summary tables Table B.1
	Methods followed are generally in accordance with the requirements of NEPM (2013).	Yes
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	Yes

Task	Description	Project
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed as part of a batched set of samples. These subsamples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intralaboratory duplicates should be performed at a frequency of at least 1 per 20 primary samples.	The Laboratory duplicate samples for the analysis batches showed calculated RPDs were within acceptable ranges
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical batch.	The Laboratory Control Samples for the analysis batches were within acceptable ranges.
Matrix Spikes / Matrix Spike Duplicates (MS/MSD)	MS/MSDs are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Most MS / MSD for the analysis batches were within acceptable ranges. One sample exceeded the acceptance criteria due to matrix interference.
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	A total of two samples exceeded the acceptance criteria. Surrogate spikes for the analysis batches were within acceptable ranges.
QA/QC Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	El considers that the data confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

H1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_O - C_R|}{[(C_O + C_R)/2]} \times 100$$

Where:

C_O = Concentration obtained for the primary sample; and

C_R = Concentration obtained for the blind replicate or split duplicate sample.

Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:

- Results are less than 10 times the limits of reporting (LOR);
- Results are less than 20 times the LOR and the RPD is less than 50%; or
- Heterogeneous materials or volatile compounds are encountered.

In cases where RPD value was considered unacceptable, the analytical results of primary and duplicate samples were both reviewed against the adopted assessment criteria. If the review indicates the variations in data between the primary and duplicate samples would result in a different conclusion (e.g. the higher concentration is failing the assessment criteria), the need for re-sampling / validation would be considered.

H2 FIELD QA/QC DATA PROGRAM

H2.1 FIELD QA SAMPLING PROGRAM

The field quality assurance/quality control (QA/QC) samples collected during the investigation works are summarised on **Table H-2**. Inter-lab duplicates were analysed by the secondary laboratory, Eurofins. Analytical results of the Field QA samples are tabulated in **Table H-3**, alongside calculated RPDs between the primary and field duplicate samples.

Table H-2 Field QA Sampling Program

Activity	Matrix	No. Primary Samples	Primary Sample ID	Intra-Lab Duplicate ID	Inter-Lab Duplicate ID	No. of Duplicates	Duplicate Ratio
Field QA Sam	ples - Du	plicates	•				•
Soil Investigation	Soil	31	BH123_0.6	QD-1	QT-1	2	1:15.5
Other Field Q	A Sample	es		•			
Soil Investigation	Soil Water	QTB1 – tri QTS1 – tri QR1 – rins	p spike				

H2.2 FIELD DATA QUALITY INDICATORS

A discussion of the field data quality indicators is presented below.

Table H-4 Field Data Quality Indicators

QA/QC Measures	Field Data Quality Indicators	Conformance / Comments
Precision – A quantitative measure of the variability (or reproducibility) of data	Standard operation procedures appropriate and complied with	Yes
Completeness – A	Each critical location sampled	Yes
measure of the amount of useable data from a data collection activity	Samples collected at targeted locations and depth	Yes
	SAQP appropriate and complied with	Yes
	Experienced sampler	Yes
	Field documentation correct	Yes
Comparability – The confidence (expressed	Same sampling method used on each occasion/location	Yes
qualitatively) that data may be considered to	Experienced sampler	Yes
be equivalent for each sampling and analytical event	Climatic conditions (temperature, rainfall, wind)	Climate conditions were recorded to be fine. These climatic conditions unlikely had significant influence on the results of the investigation.
	Same type of samples collected (filtered, size, fractions)	Yes
Representativeness – The confidence	Appropriate media sampled according to SAQP	Yes
(expressed qualitatively) that data are representative of	Each media identified in SAQP sampled	Yes
each medium present onsite	Appropriate sample collection methodologies, handling, storage and preservation techniques used	Yes
	Consistency between field observations and laboratory results.	Yes
Accuracy – A quantitative measure	Standard operation procedures appropriate and complied with	Yes
of the closeness of reported data to the "true" value	Calibration of instruments against known standards	Yes

H2.3 CONCLUSION FOR THE FIELD QA/QC

Based on the above review of the field QA/QC data EI considered the field QA/QC programme carried out during the investigations to be appropriate and the results to be acceptable.

H3 LABORATORY QA/QC

H3.1 LABORATORY ACCREDITATION

Primary and intra-laboratory duplicate samples were analysed by SGS Alexandria Environmental, NSW; inter-laboratory triplicate samples were analysed by Envirolab, Artarmon NSW; all laboratories are accredited by NATA for the analyses undertaken.

A discussion of the laboratory DQIs is presented below.

Table H-5 Lab Data Quality Indicators

QA/QC Measures	Laboratory Data Quality Indicators	Conformance/Comments
Completeness – A measure of the amount of	All critical samples analysed according to SAQP and proposal	Yes
useable data from a data collection activity	All analytes analysed according to SAQP in proposal	Yes
	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
Comparability – The confidence (expressed	Same sample analytical methods used (including clean-up)	Yes
qualitatively) that data may be considered to be	Same Sample PQLs	Yes
equivalent for each sampling and analytical	Same laboratories (NATA-accredited)	Yes
event	Same units	Yes
Representativeness – The confidence	All key samples analysed according to SAQP in the proposal.	Yes
(expressed qualitatively) that data are representative of each medium present onsite	Analysis of laboratory-prepared volatile trip spikes and trip blanks	Yes
Precision – A quantitative measure of the variability	Analysis of laboratory and inter-laboratory duplicates	Yes
(or reproducibility) of data	Analysis of field duplicates	Yes
Accuracy – A quantitative	Analysis of rinsate blanks	Yes
measure of the closeness of reported data to the	Analysis of reagent blanks	Not applicable
"true" value	Analysis of method blanks	Yes
	Analysis of matrix spikes (MS)	Yes
	Analysis of matrix spike duplicates (MSD)	Yes
	<u> </u>	·

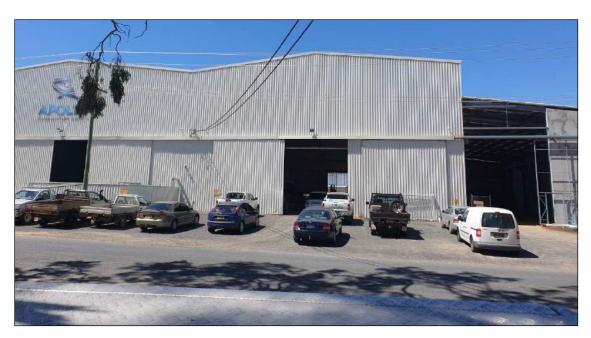
QA/QC Measures	Laboratory Data Quality Indicators	Conformance/Comments
	Analysis of surrogate spikes	Yes
	Analysis of reference materials	Not performed / applicable
	Analysis of laboratory control samples	Yes
	Analysis of laboratory-prepared spikes	Yes

Overall, it is considered that the laboratory data quality objectives for this project have been attained.

H3.2 Conclusions on Lab QA/QC

Based on the laboratory QA/QC results EI considers that the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

H4 SUMMARY OF PROJECT QA/QC


The sampling methods (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation works were mostly consistent with EI protocols and meeting the DQOs for this project. Some discrepancies from the DQOs were reported however they were considered to not be detrimental to the validity of collected data. It is therefore considered that the data is sufficiently precise and accurate and that the results can be relied upon for interpretation.

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix I - Site Photographs

Photograph 1: Image of general site conditions, street view of main warehouse building, during intrusive investigations, facing south (8 December 2020).

Photograph 2: Image of exposed soil with traces of foreign materials in former location of residential dwellings, adjacent east of main factory building, facing north (8 December 2020).

Photograph 3: Image of abandoned cars and disassembled automotive engines in south-western portion of site, facing west (8 November 2020).

Photograph 4: Image of stockpiled construction waste and scrap metal in south-western portion of site, facing south (8 November 2020).

Photograph 5: Image of rear of main warehouse building with shipping container-style and demountable offices (8 December 2020).

Photograph 6: Image of stockpiled oil drums in southern portion of site, shipping container offices behind; facing west (8 December 2020).

Photograph 7: Image of stored paint and metal painting area, no apparent cracking in slab, no obvious signs of spills / leaks observed, facing north (8 December 2020).

Photograph 8: Image of paint spraying booth adjacent south-eastern access door, facing south (8 December 2020).

Photograph 9: Image of fuel pump with associate fill / dip points and approximate mark-up of tank footprint; hydrocarbon staining apparent on soil surface, facing south (8 December 2020). Location BH123 situated near inferred location of UST

Photograph 10: Image of natural soil materials encountered within borehole 'BH113' (8 December 2020).

Photograph 11: Image of the southwest portion after the clean. This photograph is provided by the client on 22 January 2021

Photograph 12: Image of the southwest portion after the clean. This photograph is provided by the client on 22 January 2021

Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix J - LotSearch

Date: 10 Dec 2020 10:19:06 Reference: LS016732 EP

Address: 2-20 Telegraph Road, Young, NSW 2594

Disclaimer:

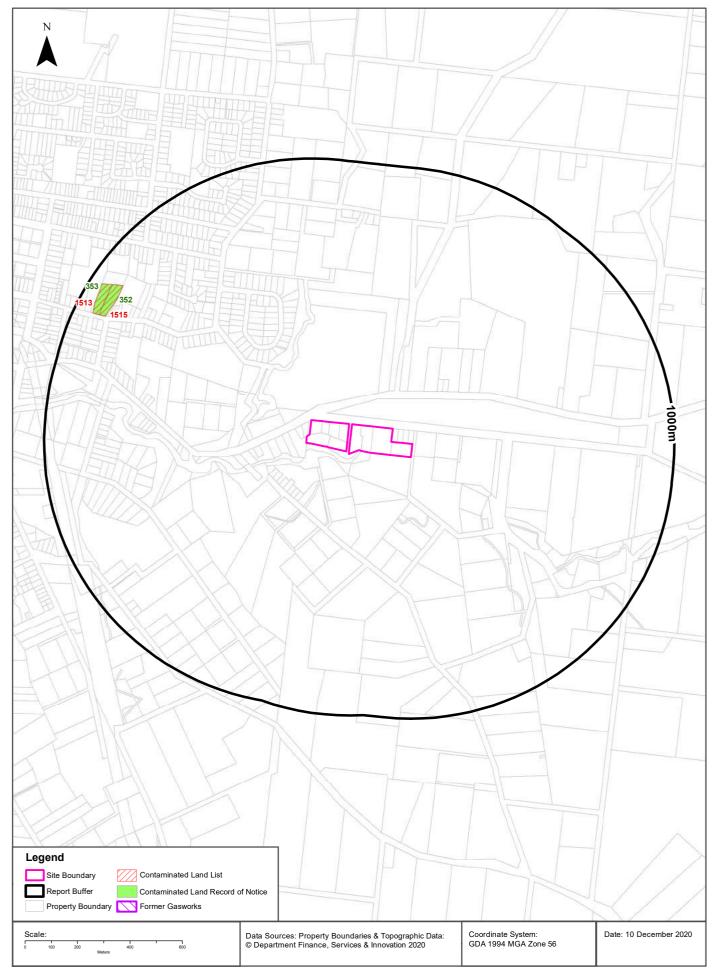
The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	13/11/2020	13/11/2020	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	18/11/2020	13/11/2020	Monthly	1000	0	0	2
Contaminated Land Records of Notice	Environment Protection Authority	03/12/2020	03/12/2020	Monthly	1000	0	0	2
Former Gasworks	Environment Protection Authority	10/12/2020	11/10/2017	Monthly	1000	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/11/2020	07/03/2017	Quarterly	1000	0	0	1
National Liquid Fuel Facilities	Geoscience Australia	12/11/2020	13/07/2012	Quarterly	1000	0	0	0
EPA PFAS Investigation Program	Environment Protection Authority	12/11/2020	07/05/2020	Monthly	2000	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	08/12/2020	08/12/2020	Monthly	2000	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	08/12/2020	08/12/2020	Monthly	2000	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	07/12/2020	07/12/2020	Monthly	2000	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	16/11/2020	16/11/2020	Monthly	2000	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	04/02/2020	13/12/2018	Annually	1000	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	10/12/2020	10/12/2020	Monthly	1000	0	0	4
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	10/12/2020	10/12/2020	Monthly	1000	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	10/12/2020	10/12/2020	Monthly	1000	3	3	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	0	0
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150	-	9	9
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500	-	2	2
Points of Interest	NSW Department of Finance, Services & Innovation	30/03/2020	30/03/2020	Quarterly	1000	0	0	8
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
Major Easements	NSW Department of Finance, Services & Innovation	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
State Forest	Forestry Corporation of NSW	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	21/01/2020	30/09/2019	Annually	1000	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	1	1	1
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	26/10/2020	21/02/2018		1000	0	0	0

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000	0	0	124
Geological Units 1:250,000	NSW Department of Planning, Industry and Environment	20/08/2014		None planned	1000	1	-	1
Geological Structures 1:250,000	NSW Department of Planning, Industry and Environment	20/08/2014		None planned	1000	0	-	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000	1	1	1
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	14/10/2020	27/07/2020	Annually	1000	1	-	1
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	04/12/2020	03/07/2020	Monthly	500	0	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	1	1
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	2	2	2
Dryland Salinity Potential of Western Sydney	NSW Department of Planning, Industry and Environment	12/05/2017	01/01/2002	None planned	1000	-	-	-
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	30/03/2020	30/03/2020	Quarterly	1000	0	0	0
Current Mining Titles	NSW Department of Industry	07/12/2020	07/12/2020	Monthly	1000	0	0	0
Mining Title Applications	NSW Department of Industry	07/12/2020	07/12/2020	Monthly	1000	0	0	0
Historic Mining Titles	NSW Department of Industry	07/12/2020	07/12/2020	Monthly	1000	5	5	5
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	04/12/2020	07/12/2018	Monthly	1000	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	04/12/2020	27/11/2020	Monthly	1000	3	4	10
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	24/11/2020	20/11/2019	Quarterly	1000	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	24/11/2020	20/11/2019	Quarterly	1000	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	12/11/2020	02/07/2020	Quarterly	1000	0	0	1
Environmental Planning Instrument Heritage	NSW Department of Planning, Industry and Environment	04/12/2020	27/11/2020	Monthly	1000	0	5	7
Bush Fire Prone Land	NSW Rural Fire Service	03/12/2020	28/11/2020	Weekly	1000	0	0	1
Ramsar Wetlands of Australia	Department of the Agriculture, Water and the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	2	2	3
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	5	5	11
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	08/12/2020	08/12/2020	Weekly	10000	-	-	-


Site Diagram

Contaminated Land

Contaminated Land

2-20 Telegraph Road, Young, NSW 2594

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
1515	Former battery recycler	45 Nasmyth Street	Young	Metal Industry	Contamination currently regulated under CLM Act	Current EPA List	Premise Match		North West
1513	Adjacent to former battery recycler	47 Nasmyth Street	Young	Metal Industry	Contamination formerly regulated under the CLM Act	Current EPA List	Premise Match	907m	North West

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

2-20 Telegraph Road, Young, NSW 2594

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
352	Former battery recycler	45 Nasmyth Street	Young	2 current	3279	Premise Match	875m	North West
353	Adjacent to Former Battery Recycler	47 Nasmyth Street	Young	2 former	3275	Premise Match	907m	North West

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

2-20 Telegraph Road, Young, NSW 2594

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
728	Young Shire Council	Victoria Street Transfer Station	Victoria Street	Young	Multi- Purpose	Operati onal		Operatio nal		Premise Match	650 m	West

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist (m)	Direction
N/A	No records in buffer										

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

2-20 Telegraph Road, Young, NSW 2594

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

N	/lap ID	Base Name	Address	Loc Conf	Dist	Dir
Ν	I/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

2-20 Telegraph Road, Young, NSW 2594

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

2-20 Telegraph Road, Young, NSW 2594

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- · Radiological investigation sites in Hunter's Hill
- · Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

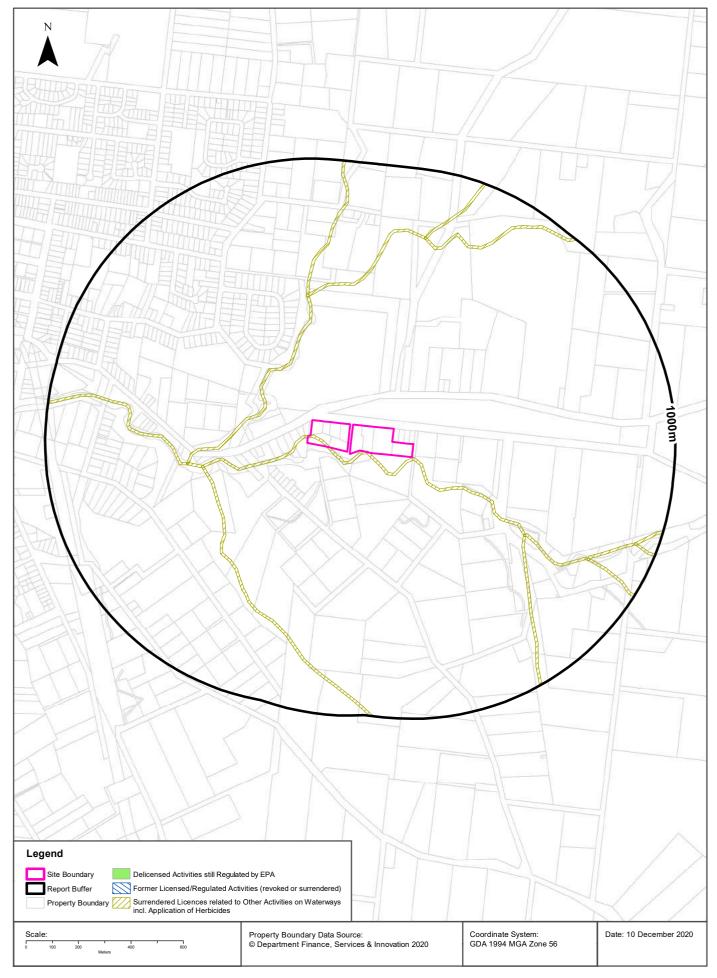
Current EPA Licensed Activities

EPA Activities

2-20 Telegraph Road, Young, NSW 2594

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:


EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
11738	AMBOS PTY. LIMITED	AMBOS STOCKFEEDS	90 TELEGRAPH ROAD	YOUNG	General agricultural processing	Premise Match	377m	East
5916	HILLTOPS COUNCIL	VICTORIA LANDFILL	VICTORIA STREET	YOUNG	Waste disposal by application to land	Premise Match	650m	West
942	CAUSMAG ORE COMPANY PROPRIETARY LIMITED	CAUSMAG INTERNATIONAL	2 PARK AVE	YOUNG	Metal processing	Premise Match	821m	West
13421	JOHN HOLLAND RAIL PTY LTD		JOHN HOLLAND RAIL NETWORK, PARRAMATTA, NSW 2124		Railway systems activities	Network of Features	963m	West

POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

2-20 Telegraph Road, Young, NSW 2594

Delicensed Activities still regulated by the EPA

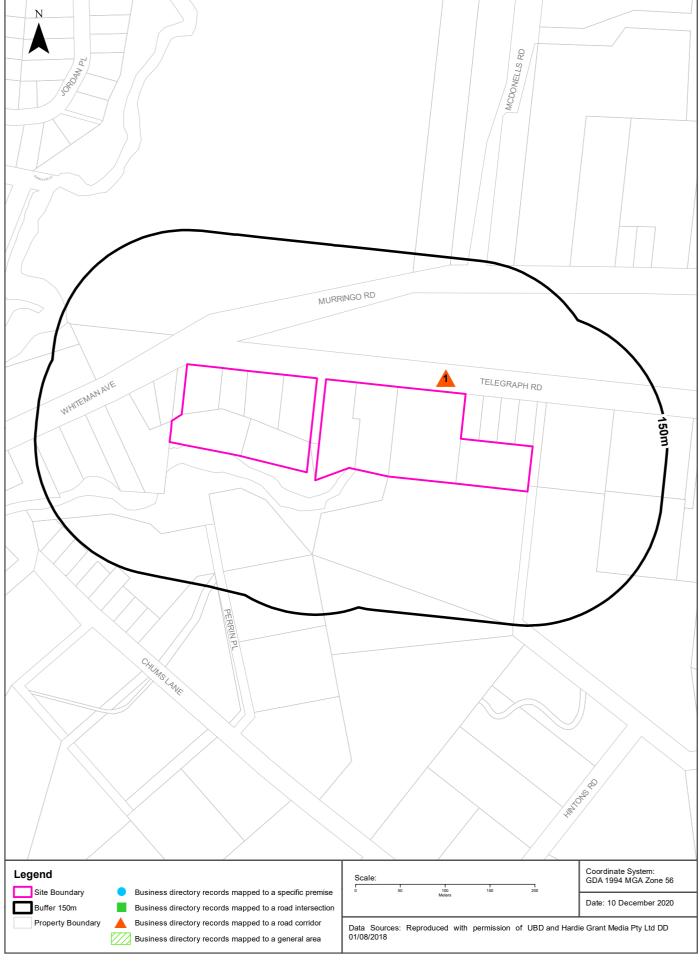
Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered


Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	IMENT THROUGHOUT Activity - App		Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	Onsite	
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	Onsite
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	Onsite

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

2-20 Telegraph Road, Young, NSW 2594

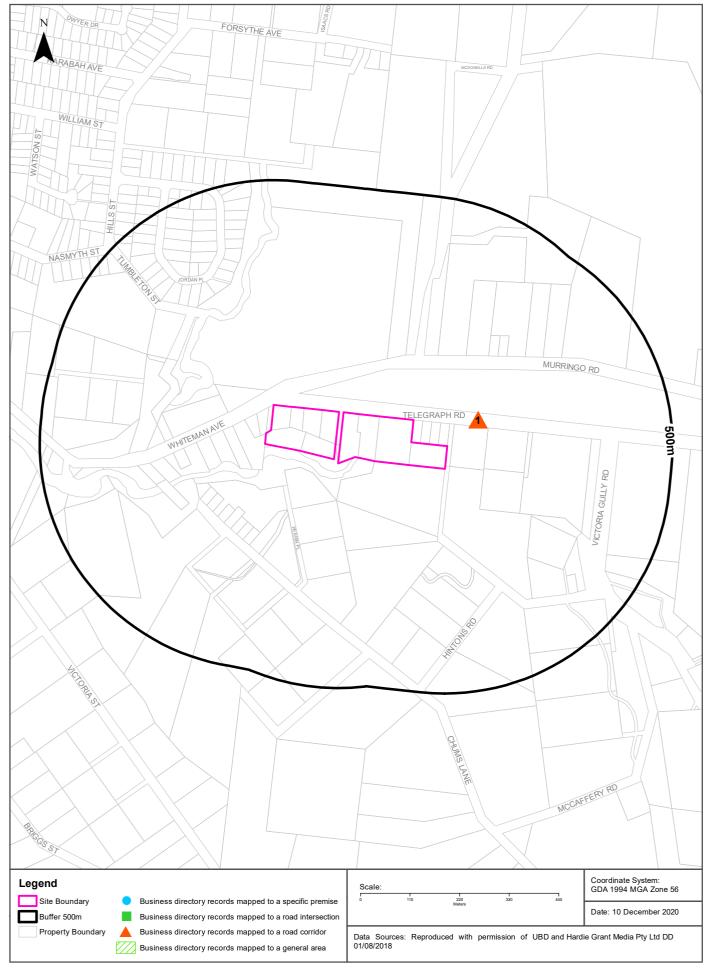
Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Ma	ap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
		No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches


Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	LAWN MOWER SALES &/OR SERVICE.	Hamlyn J. Engineering., Telegraph Rd, Young	150746	1991	Road Match	0m
	BRICKLAYERS.	Johnson C. C., Telegraph Rd, Young	150497	1991	Road Match	0m
	MIXED BUSINESSES	Dawe, J. L., Telegraph Rd., Young	158769	1982	Road Match	0m
	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS	Dawe, J. L., Telegraph Rd., Young	158812	1982	Road Match	0m
	BRICKLAYERS &/OR BRICKLAYING CONTRACTORS	Johnson, C. C., Telegraph Rd., Young	158526	1982	Road Match	0m
	MIXED BUSINESSES	Dawes, J. L., Telegraph Rd. Young	589452	1970	Road Match	0m
	MOTOR SERVICE STATIONS- PETROL, OIL, ETC.	Dawes, J. L., Telegraph Rd. Young	589549	1970	Road Match	0m
	BRICKLAYERS & BRICKLAYING CONTRACTORS	Johnson, S. G., Telegraph Rd. Young	588995	1970	Road Match	0m
	CARRIERS & CARTAGE CONTRACTORS	Miller, R. J., Telegraph Rd. Young	589073	1970	Road Match	0m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

2-20 Telegraph Road, Young, NSW 2594

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Confidence	Distance to Property Boundary or Road Intersection	Direction
	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

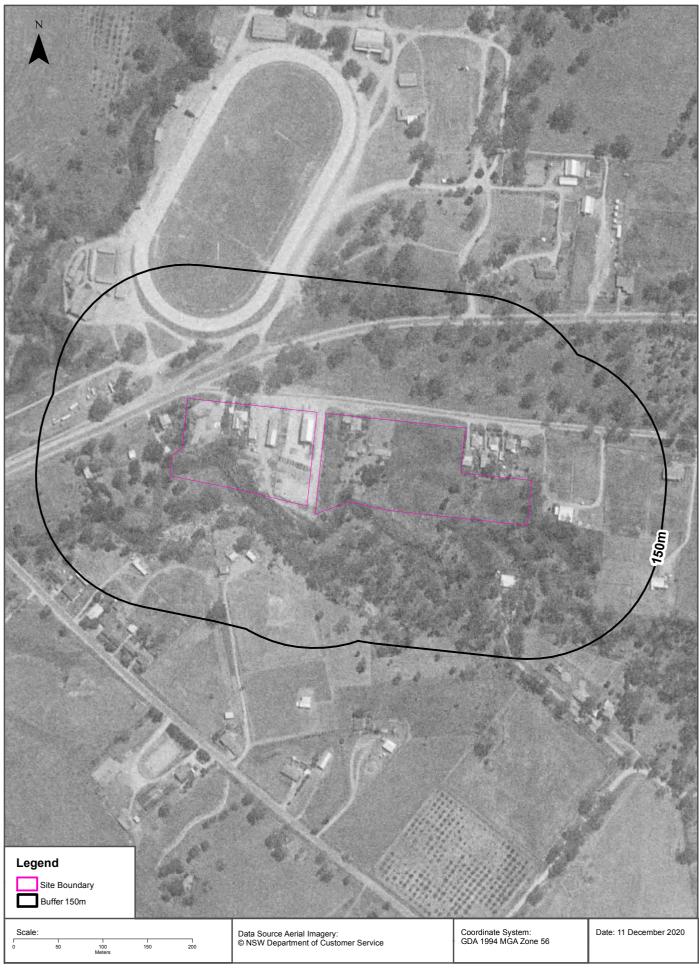
Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

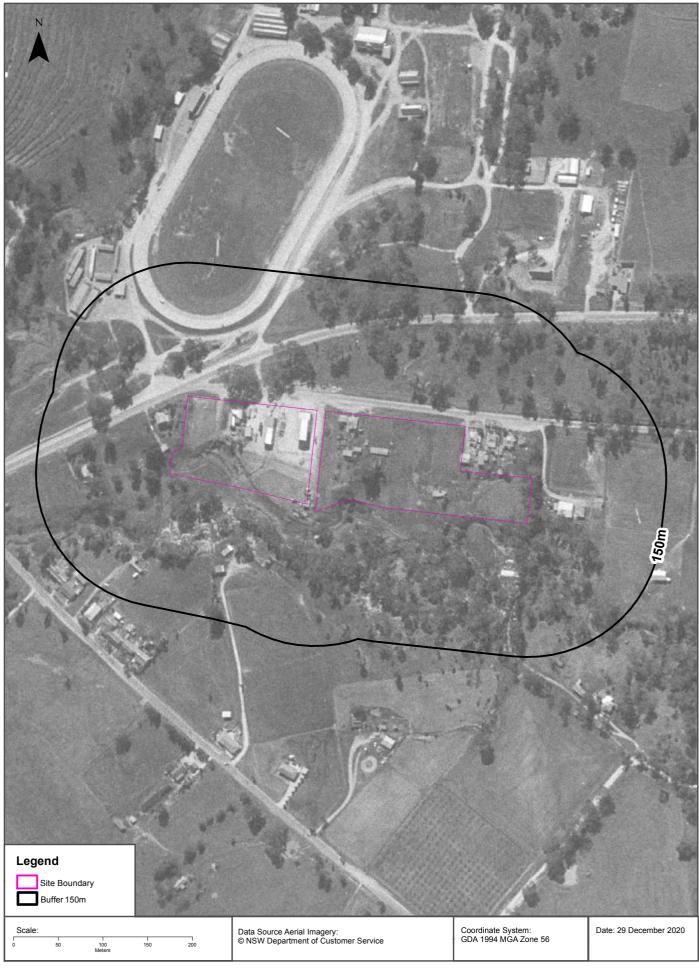
Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

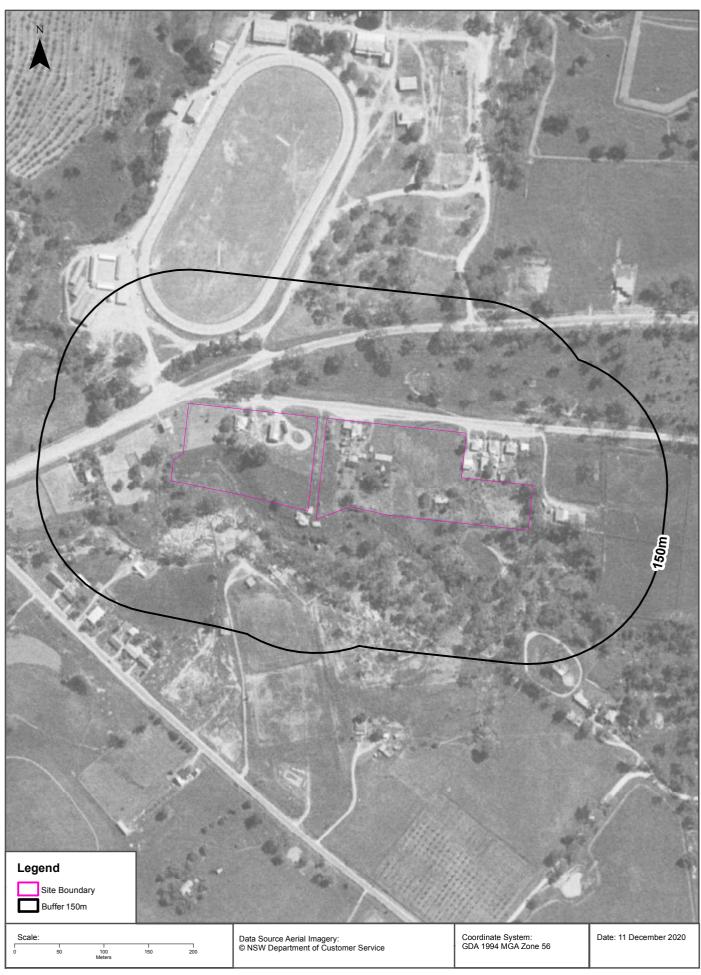
M	lap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
	1	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS	Dawe, J. L., Telegraph Rd., Young	158812	1982	Road Match	0m
		MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Dawes, J. L., Telegraph Rd. Young	589549	1970	Road Match	0m

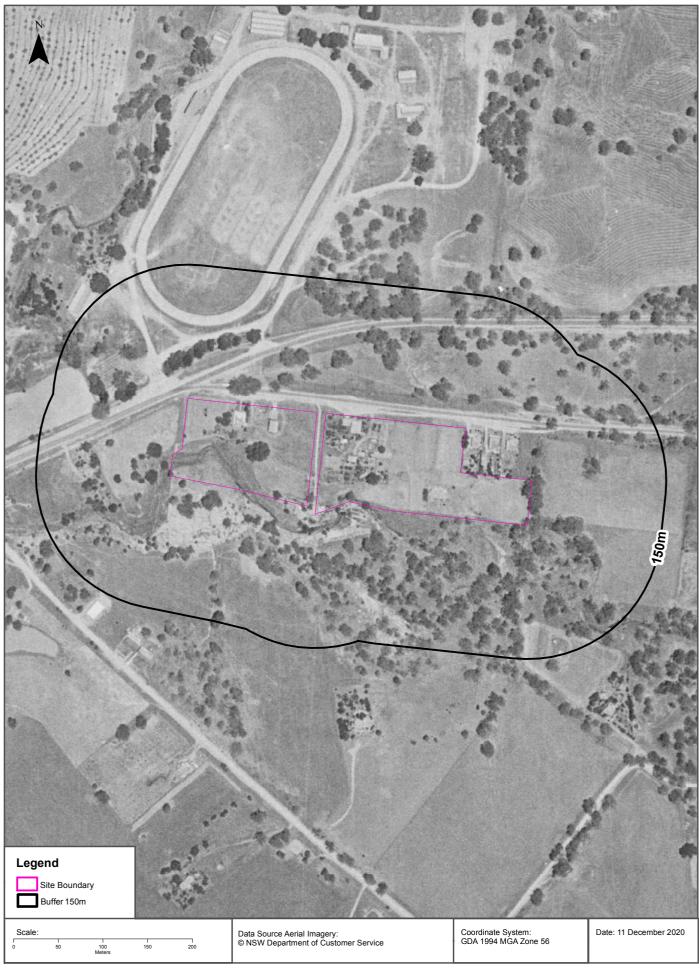
Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

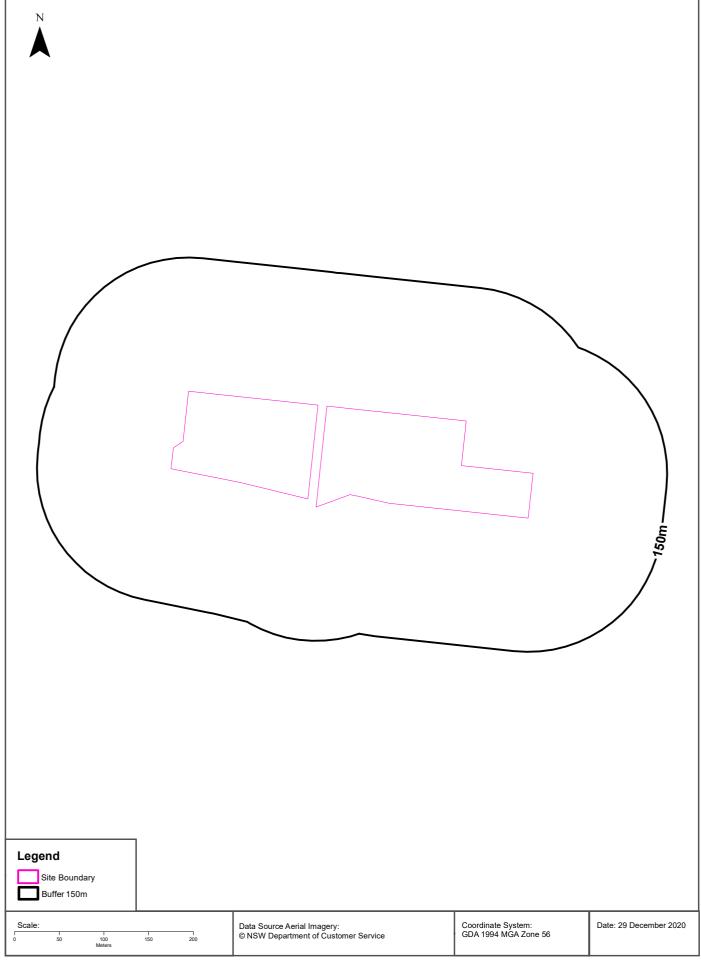
Aerial Imagery 1997 2-20 Telegraph Road, Young, NSW 2594



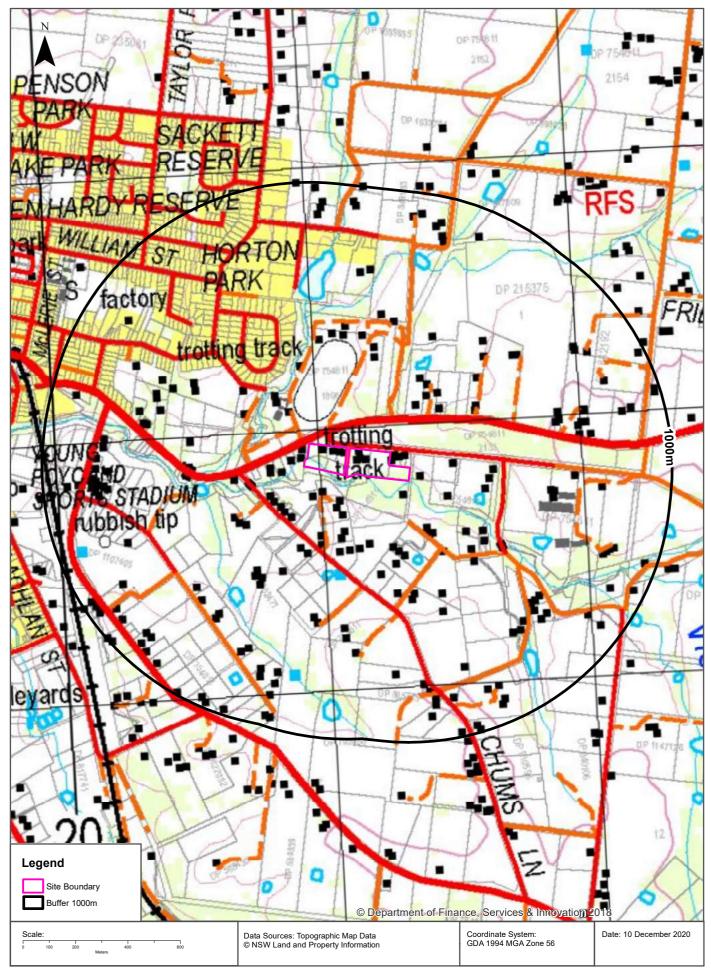

Aerial Imagery 1989 2-20 Telegraph Road, Young, NSW 2594

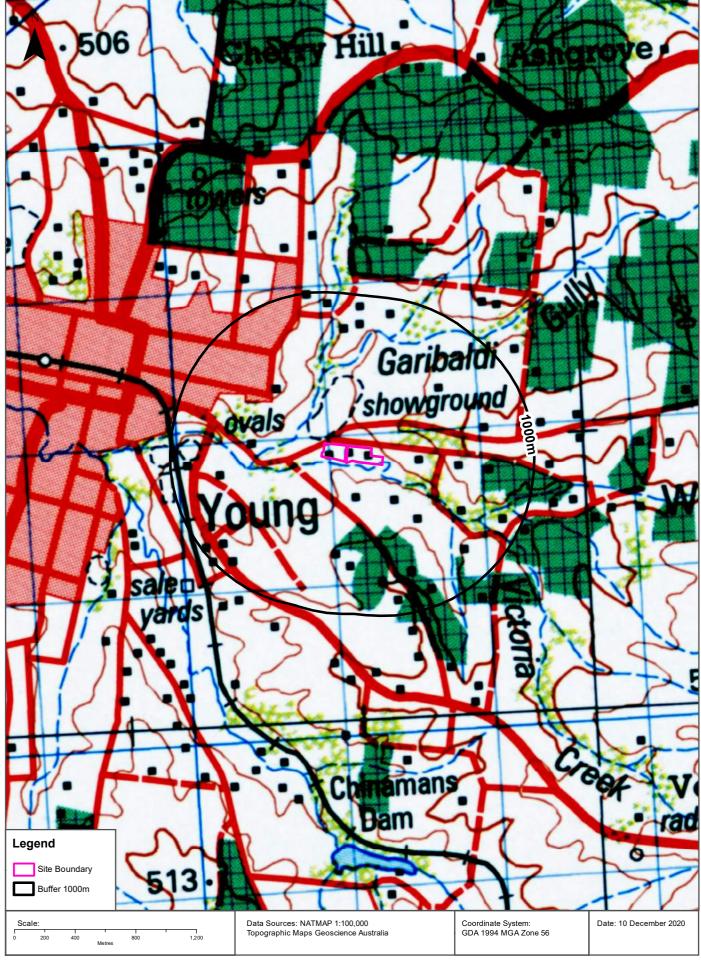

Aerial Imagery 1985 2-20 Telegraph Road, Young, NSW 2594

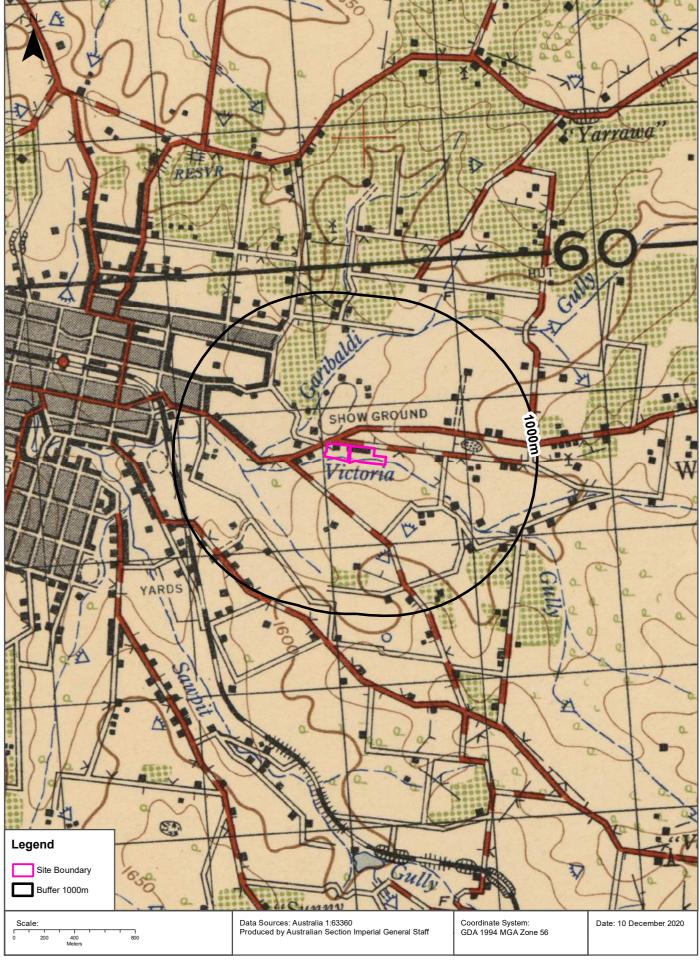

Aerial Imagery 1978 2-20 Telegraph Road, Young, NSW 2594

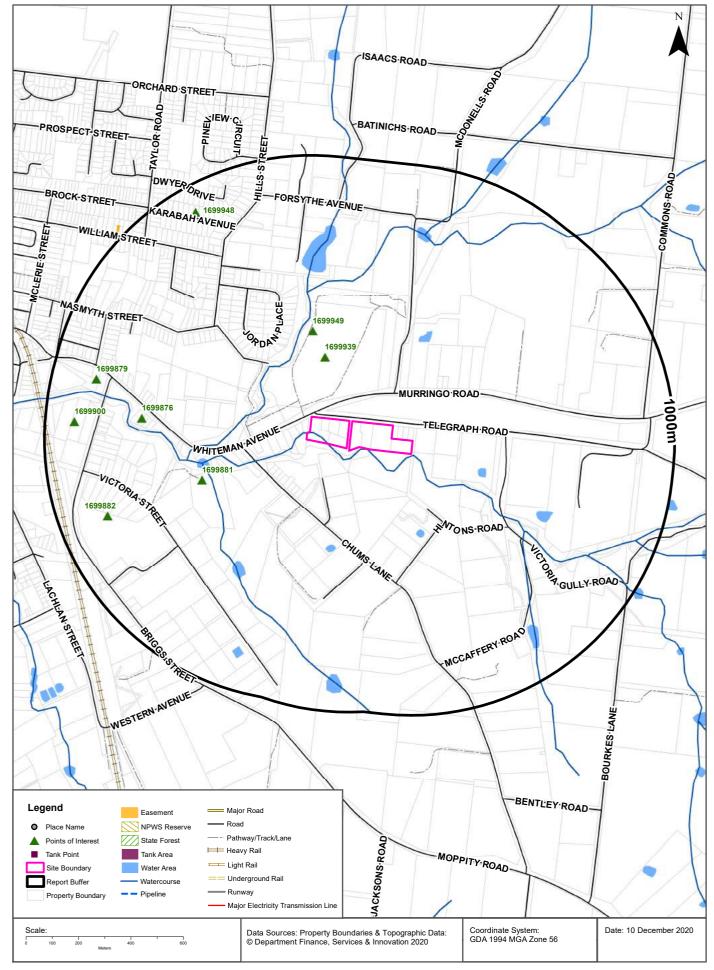


Aerial Imagery 1969




Topographic Map 2015


Historical Map 1999



Historical Map c.1957

2-20 Telegraph Road, Young, NSW 2594

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
1699939	Showground	YOUNG SHOWGROUND	233m	North
1699949	Trotting Track	YOUNG HARNESS RACING CLUB	328m	North West
1699881	Park	BLACKGUARD GULLY RESERVE	428m	West
1699876	Park	JACK HOWARD RESERVE	633m	West
1699882	Rubbish Depot	YOUNG WASTE TRANSFER STATION	813m	West
1699879	Park	BETTE BOOKER PARK	830m	West
1699900	Sports Field	KEITH CULLEN OVAL	888m	West
1699948	Park	HORTON PARK	899m	North West

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

2-20 Telegraph Road, Young, NSW 2594

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
N/A	No records in buffer				

Easements Data Source: © Land and Property Information (2015)

 $\label{lem:commons} \textbf{Creative Commons 3.0 @ Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en} \\$

2-20 Telegraph Road, Young, NSW 2594

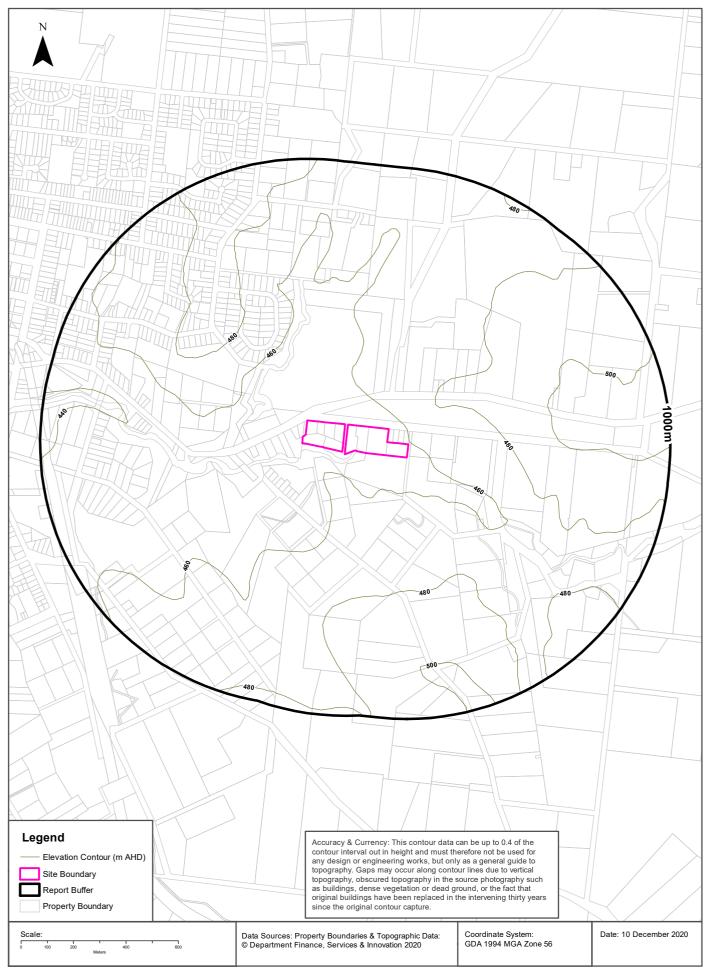
State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves


What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

2-20 Telegraph Road, Young, NSW 2594

Hydrogeology

Description of aquifers on-site:

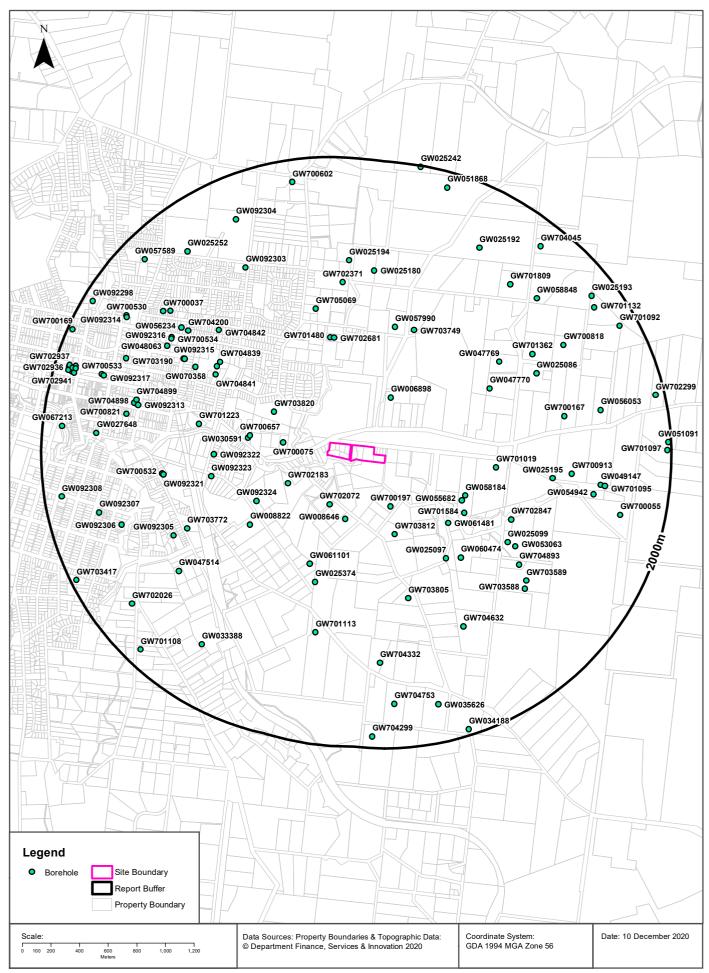
Description	
Fractured or fissured, extensive aquifers of low to moderate produc	tivity

Description of aquifers within the dataset buffer:

Description Fractured or fissured, extensive aquifers of low to moderate productivity

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018


Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source: NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

2-20 Telegraph Road, Young, NSW 2594

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW700 197	70BL226 255, 70WA60 5704	Bore	Private	Stock	Domestic, Stock		30/06/1995	33.30	33.30					309m	South East
GW700 075	70BL145 501, 70WA60 5676	Bore	Private	Domestic, Stock			04/03/1992	57.91	57.91	Good	0.60	3.440		317m	West
GW702 072	70BL229 136, 70WA60 5822	Bore	Private	Domestic, Stock	Domestic, Stock		24/03/2003	85.00	85.00		10.0	0.375		337m	South West
GW702 183	70BL228 424, 70WA60 5793	Bore	Private	Domestic	Domestic		02/05/2003	53.00	53.00			0.883		338m	South West
GW006 898	70BL001 590, 70WA60 5494	open	Private	Domestic, Stock	General Use		01/08/1944	54.90	54.90	Good				366m	North East
GW008 646	70BL002 527, 70WA60 5503	open	Private	Domestic, Stock	Domestic, Stock		01/05/1950	55.50	55.50	1001- 3000 ppm				407m	South
GW703 820	70BL229 296	Bore	Private	Domestic, Stock	Domestic, Stock		15/06/2003	128.00			30.0 0	4.000		447m	North West
GW703 812	70BL230 156	Bore	Private	Domestic, Stock	Domestic, Stock		06/02/2004	138.00	138.00		6.00	0.500		505m	South East
GW700 657	70BL227 106, 70WA60 5725	Bore	Private	Domestic	Domestic			40.00	40.00		0.00			554m	West
GW030 591	70BL026 239, 70WA60 5546	open	Private	Domestic, Stock	Domestic, Stock		01/09/1971	73.20	73.20	501- 1000 ppm				563m	West
GW092 324		Bore	Local Govt				25/02/1997	17.50	17.50		6.29			590m	South West
GW055 682	70BL120 946	Bore open thru rock	Private	Domestic, Stock	Farming		01/07/1981	38.40	38.40	Fair				602m	South East
GW058 184	70BL126 843	Bore open thru rock	Private	Domestic, Stock	Domestic, Stock		01/01/1983	68.50	68.50	Good				611m	East
GW061 481	70BL133 932, 70WA60 5646	Bore	Private	Domestic, Stock	Domestic, Stock		01/04/1986	14.00	14.00					614m	South East
GW701 584	70BL228 306, 70WA60 5780	Bore	Private	Stock	Stock		21/11/2001	113.00	113.00			1.390		661m	South East
GW008 822	70BL002 615	Bore open thru rock	Private	Domestic, Irrigation, Stock	Irrigation		01/09/1949	35.70	35.70	Brackis h				728m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW702 681	70BL230 536, 70WA60 5884	Bore	Private	Domestic, Stock	Domestic, Stock		30/03/2005	40.00	40.00		5.00	2.250		735m	North
GW701 480	70BL228 386, 70WA60 5790	Bore	Private	Domestic	Domestic, Stock		23/01/2002	57.00	57.00		7.50	1.260		736m	North
GW061 101	70BL132 766, 70WA60 5639	Bore	Private	Domestic, Stock	Domestic, Stock		01/05/1985	45.70	45.70	Good				771m	South
GW701 019	70BL227 652	Bore	Private	Domestic, Stock	Test Bore			132.00	132.00					780m	East
GW092 322		Bore	Local Govt				25/02/1997	17.00	17.00		10.9 7			792m	West
GW025 097		Bore	Private		Not Known		01/12/1967	30.50	30.80	1001- 3000 ppm				797m	South East
GW092 323		Bore	Local Govt				25/02/1997	17.90	17.90		6.51			824m	West
GW060 474	70BL127 467	Bore	Private	Domestic, Irrigation, Stock	Irrigation		01/01/1982	30.50						853m	South East
GW057 990	70BL126 672, 70WA60 5624	Bore	Private	Domestic, Stock	Irrigation		01/12/1982	24.00	24.00	1001- 3000 ppm				856m	North
GW703 749	70BL227 611	Bore	Private	Domestic, Irrigation, Stock	Domestic, Irrigation, Stock		01/01/2004	32.00			18.0 0			866m	North East
GW047 770	70BL107 941, 70BL227 518, 70CA60 6034	Bore		Domestic, Irrigation, Stock	Not Known		01/01/1974	30.50		Very Poor				869m	North East
GW025 374		Bore open thru rock	Private		Irrigation		01/04/1969	91.40	91.40					882m	South
GW701 223	70BL227 959	Bore	Private	Test Bore	Test Bore		10/01/2001	90.00	90.00	Good		0.126		918m	West
GW704 841	70BL233 563			Monitoring Bore	Monitoring Bore		16/12/2010	19.00	19.00		17.3 1			929m	North West
GW705 069					Domestic, Stock		06/03/2017	126.00			19.0 0			942m	North
GW704 839	70BL233 562			Monitoring Bore	Monitoring Bore		15/12/2010	13.50	13.50		9.00			951m	North West
GW704 840	70BL233 563			Monitoring Bore	Monitoring Bore		16/12/2010	15.30	15.30		12.7 6			953m	North West
GW703 805	70BL229 889	Bore	Private	Domestic	Domestic		01/01/2004	130.00		S.Salty	20.0	0.380		963m	South
GW702 847	70BL227 011	Bore	Private	Irrigation	Irrigation		31/12/1981	30.00	30.00					972m	South East
GW025 099		Bore	Private		General Use		01/12/1967	30.50	30.50	1001- 3000 ppm				1027m	South East
GW047 769	70BL107 131	Bore open thru rock	Private	Domestic, Irrigation, Stock	Irrigation		01/06/1978	45.70	45.70	Good				1035m	North East
GW070 358	70BL150 428, 70WA60 5680	Bore		Domestic	Domestic		12/08/1992	60.60	60.60					1078m	North West
GW053 063	70BL117 275	Bore	Private	Domestic, Irrigation, Stock	Irrigation		01/01/1981	53.00	53.30	Good				1087m	South East
GW704 842	70BL233 564			Monitoring Bore	Monitoring Bore		17/12/2010	20.40	20.40		15.5 7			1104m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW703 772	70BL229 298	Bore	Private	Domestic, Stock	Domestic, Stock		01/07/2003	20.00						1105m	South West
GW702 371	70BL230 154, 70WA60 5866	Bore	Private	Domestic, Stock	Domestic, Stock		14/05/2004	100.00	100.00		1.00	31.25 0		1126m	North
GW092 321		Bore	Local Govt		Monitoring Bore		22/05/1996	8.40	9.00	806	4.80			1152m	West
GW700 532	70BL226 552	Bore	Local Govt	Monitoring Bore	Monitoring Bore		22/05/1996	8.40	9.00	806	4.80			1159m	West
GW700 531	70BL226 552	Bore	Local Govt	Monitoring Bore	Monitoring Bore		23/05/1996	7.45	10.00	890	4.94			1172m	North West
GW092 315		Bore	Local Govt		Monitoring Bore		23/05/1996	7.45	10.00	890	4.94			1178m	North West
GW025 195		Bore open thru rock	Private		Stock		01/07/1968	61.00	61.00	1001- 3000 ppm				1181m	East
GW704 893	70BL226 975, 70CA60 6088			Domestic, Irrigation, Stock	Domestic, Irrigation, Stock		11/12/1989							1184m	South East
GW025 086		Bore	Private		Irrigation		01/11/1967	23.50	23.50	1001- 3000 ppm				1206m	North East
GW092 305		Bore	Local Govt		Monitoring Bore		26/02/1997	6.65	6.65	2560	6.10			1213m	South West
GW701 113	70BL227 400, 70WA60 5741	Bore	Private	Domestic, Stock	Domestic		05/12/1998	205.00	205.00	Salty	32.0 0	15.15 0		1223m	South
GW025 180		Bore	Private		General Use		01/05/1968	24.40	24.40	501- 1000 ppm				1231m	North
GW701 362	70BL228 455, 70CA60 6196	Bore	Private	Irrigation	Irrigation		18/03/2002			Good		1.000		1251m	North East
GW704 200	70BL231 275	Bore	Private	Domestic	Domestic, Stock		26/02/2009	31.00	31.00		3.00	0.252		1262m	North West
GW704 632	70WA61 0528	Bore	Private	Domestic	Domestic		16/07/2013	160.00						1273m	South East
GW700 167	70BL226 128, 70WA60 5700	Bore		Domestic, Stock	Domestic		27/10/1995	75.00	75.00					1283m	East
GW025 194		Bore	Private		General Use		01/06/1968	53.30	53.30	1001- 3000 ppm				1283m	North
GW703 589	70BL226 650, 70BL226 974	Bore	Private	Domestic, Irrigation, Stock	Domestic, Farming, Irrigation, Stock		10/02/1998	90.90	90.90			0.660		1292m	South East
GW700 913	70BL226 636, 70BL232 115	Well	Private	Irrigation, Stock	Irrigation, Stock		01/01/1900	9.00	9.00		6.00	0.180		1311m	East
GW056 234	70BL121 951, 70WA60 5615	Bore	Private	Domestic	Domestic		01/11/1981	23.40	23.40	Good				1312m	North West
GW047 514	70BL111 321, 70WA60 6108	open	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/07/1979	61.00	61.00					1318m	South West
GW048 063	70BL107 733, 70BL112 698, 70WA60 6110	Bore	Local Govt	Recreation (groundwater)	Recreation (groundwate r)		01/01/1978	20.40	20.40	Good				1322m	North West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW703 588	70BL226 651, 70BL226 976	Bore	Private	Domestic, Irrigation, Stock	Domestic, Farming, Irrigation, Stock		18/05/1998	60.00	60.00			2.070		1322m	South East
GW700 534	70BL226 552	Bore	Local Govt	Monitoring Bore	Monitoring Bore		22/05/1996	13.32	14.00	2342	0.43			1324m	North West
GW092 316		Bore	Local Govt		Monitoring Bore		22/05/1996	13.32	14.00	2342	0.43			1329m	North West
GW092 303		Bore	Local Govt		Monitoring Bore		26/02/1997	6.30	6.30					1360m	North West
GW092 313		Bore	Local Govt		Monitoring Bore		27/02/1997	9.65	9.65					1363m	West
GW704 897	70BL233 381			Monitoring Bore	Monitoring Bore		10/03/2010	6.00	6.00		1.80			1379m	West
GW704 899	70BL233 381			Monitoring Bore	Monitoring Bore		10/03/2010	6.00	6.00		2.90			1382m	West
GW704 898	70BL233 381			Monitoring Bore	Monitoring Bore		10/03/2010	7.50	7.50		2.90			1393m	West
GW704 332	70BL231 177	Bore	Private	Domestic, Stock	Domestic, Stock		19/05/2006	100.00	100.00					1402m	South
GW700 821	70BL150 363, 70WA60 5679	Bore	Private	Domestic	Domestic		17/07/1992	22.50	22.60					1428m	West
GW700 039	70BL144 668	Bore		Domestic	Domestic		22/11/1991	21.50	21.50					1447m	North West
GW700 818	70BL145 299, 70WA60 5673	Bore	Private	Domestic, Stock	Domestic		01/01/1992	48.00	48.00			0.880		1468m	North East
GW054 942	70BL118 624, 70WA60 5607	Bore	Private	Domestic	General Use		01/07/1981	15.80	15.80	Good				1479m	East
GW701 809	70BL229 486, 70WA60 5840	Bore	Private	Stock	Stock		17/06/2003	72.00	72.00					1484m	North East
GW700 037	70BL144 602, 70WA60 5670	Bore		Domestic			21/11/1991	24.20	24.20		7.00	0.900		1485m	North West
GW092 306		Bore	Local Govt		Monitoring Bore		27/02/1997	6.00	6.00					1517m	West
GW049 147	70BL107 664, 70WA60 5576	Bore	Private	Domestic, Stock	Domestic, Stock		01/06/1978	19.80	19.80	Good				1519m	East
GW058 848	70BL128 262, 70WA60 5631	Bore	Private	Domestic, Stock	Domestic, Stock		01/12/1982	23.00						1530m	North East
GW703 190	70BL231 477	Bore	Private	Domestic, Stock	Domestic, Stock		20/08/2007	30.00	30.00		9.00	0.100		1540m	North West
GW056 053	70BL121 984, 70WA60 5616	Bore	Private	Domestic, Stock	Domestic, Stock		01/03/1982	48.80	48.80					1541m	East
GW701 095	70BL227 356, 70CA60 6116	Bore	Private	Irrigation	Irrigation			25.00	25.00		24.0 0			1550m	East
GW025 192		Bore	Private		Irrigation		01/06/1968	76.20	76.20					1577m	North East
GW033 388	70BL026 942, 70WA60 5549	Bore	Private	Stock	Stock		01/09/1971	36.60	36.60					1589m	South West
GW027 648	70BL021 774, 70WA60 5536	Bore	Private	Recreation (groundwater)	Recreation (groundwate r)		01/04/1968	48.80	48.80	Good				1619m	West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW092 307		Bore	Local Govt		Monitoring Bore		27/02/1997	6.10	6.50					1644m	West
GW092 317		Bore	Local Govt		Monitoring Bore		22/05/1996	9.36	11.00	548	3.84			1648m	West
GW700 533	70BL226 552	Bore	Local Govt	Monitoring Bore	Monitoring Bore		22/05/1996	9.36	11.00	856	3.84			1663m	West
GW025 252		Bore open thru rock	Private		Irrigation		01/09/1968	85.30	85.30					1667m	North West
GW092 314		Bore	Local Govt		Monitoring Bore		23/05/1996	16.18	16.18	1267	10.8 0			1669m	North West
GW700 530	70BL226 552	Bore	Local Govt	Monitoring Bore	Monitoring Bore		23/05/1996	16.18	16.18	1267	10.8 0			1678m	North West
GW700 055	70BL145 171, 70WA60 5672	Bore		Domestic, Stock	Domestic, Stock		25/01/1992	24.70	24.70					1689m	East
GW704 753	70WA61 4952	Bore	Private	Domestic, Stock	Domestic, Stock		04/03/2014	120.00	120.00			0.252		1690m	South
GW092 304		Bore	Local Govt		Monitoring Bore		26/02/1997	6.30	6.30					1694m	North West
GW702 026	70BL229 827, 70WA60 5854	Bore	Private	Domestic	Domestic		20/04/2004	92.00	92.00			0.505		1716m	South West
GW035 626	70BL102 129, 70WA60 5560	open	Private	Stock	Domestic, Stock		01/09/1973	121.90	121.90	Good				1733m	South
GW701 132	70BL227 597, 70BL228 154	Bore	Private	Irrigation	Irrigation		24/02/1989	46.00	72.00		2.10	4.000		1793m	North East
GW057 589	70BL126 017, 70WA60 5622	Bore open thru rock	Private	Domestic	General Use		01/02/1983	60.00	60.00					1820m	North West
GW704 045	70BL232 773	Bore	Private	Domestic, Stock	Domestic, Stock		06/05/2009	42.00	42.00		10.0	0.126		1825m	North East
GW025 193	70BL022 458	Bore	Private	Stock	Stock		01/06/1968	30.50	30.50	1001- 3000 ppm				1828m	North East
GW700 602	70BL226 780, 70WA60 5718	Bore	Private	Domestic	Domestic		26/08/1998	63.00	63.00		30.0	0.080		1843m	North
GW702 934	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		02/02/2005	6.00	6.00					1850m	West
GW702 935	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		02/02/2005	6.00	6.00					1853m	West
GW702 939	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		01/02/2005	8.00	8.00					1855m	West
GW067 213	70BL141 159, 70WA60 5659	Bore	Private	Domestic	Domestic			20.00	20.00				460.0 0	1863m	West
GW702 941	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		01/02/2005	5.00	5.00		1.20			1871m	West
GW702 938	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		02/02/2005	6.00	6.00					1873m	West
GW701 092	70BL227 376, 70WA60 5739	Bore	Private	Domestic, Stock	Domestic, Stock		01/11/1995	60.00				0.940		1875m	North East
GW092 308		Bore	Local Govt		Monitoring Bore		27/02/1997	6.20	6.20					1878m	West
GW701 108	70BL154 819, 70WA60 5690	Bore	Private	Domestic, Stock	Domestic, Farming, Stock		12/05/1993	66.40	66.40		20.0	0.370		1887m	South West

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW051 868	70BL107 231, 70WA60 5574	open	Private	Domestic, Stock	Domestic, Stock		01/01/1977	76.20	76.20	Good				1888m	North
GW702 940	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		01/02/2005	6.00	6.00		3.50			1896m	West
GW702 936	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		02/02/2005	6.00	6.00					1897m	West
GW702 937	70BL230 628	Bore	Private	Monitoring Bore	Monitoring Bore		02/02/2005	6.00	6.00					1898m	West
GW704 299	70BL229 984	Bore	Private	Domestic, Stock	Domestic, Stock		01/01/1994	67.00	67.00		6.00	0.375		1920m	South
GW092 298		Bore	Local Govt		Monitoring Bore		26/02/1997	4.25	4.25	384	2.65			1929m	North West
GW702 299	70BL230 676	Bore	Private	Domestic, Stock	Domestic, Stock		27/05/2005	126.00	126.00					1937m	East
GW034 188	70BL028 909, 70WA60 5550	open	Private	Stock	Stock		01/07/1973	99.00	99.10	Fair				1958m	South
GW703 417	70BL229 763	Bore	Private	Domestic, Stock	Domestic, Stock		01/01/2004	38.00	38.00					1960m	South West
GW700 169	70BL226 067	Bore		Domestic	Domestic, Stock		31/01/1995	38.00	38.00	Good				1965m	North West
GW701 097	70BL227 357, 70CA60 6114	Bore	Private	Irrigation	Farming, Irrigation		31/08/2000	45.00	45.00					1974m	East
GW051 091	70BL108 796, 70WA60 5582	open	Private	Domestic, Stock	Domestic, Stock		01/06/1980	53.30	53.30					1981m	East
GW025 242	70BL022 793, 70BL227 068, 70CA60 6136	Bore	Private	Domestic, Irrigation	Irrigation		01/08/1968	61.00	61.00	1001- 3000 ppm				1991m	North

Borehole Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

2-20 Telegraph Road, Young, NSW 2594

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

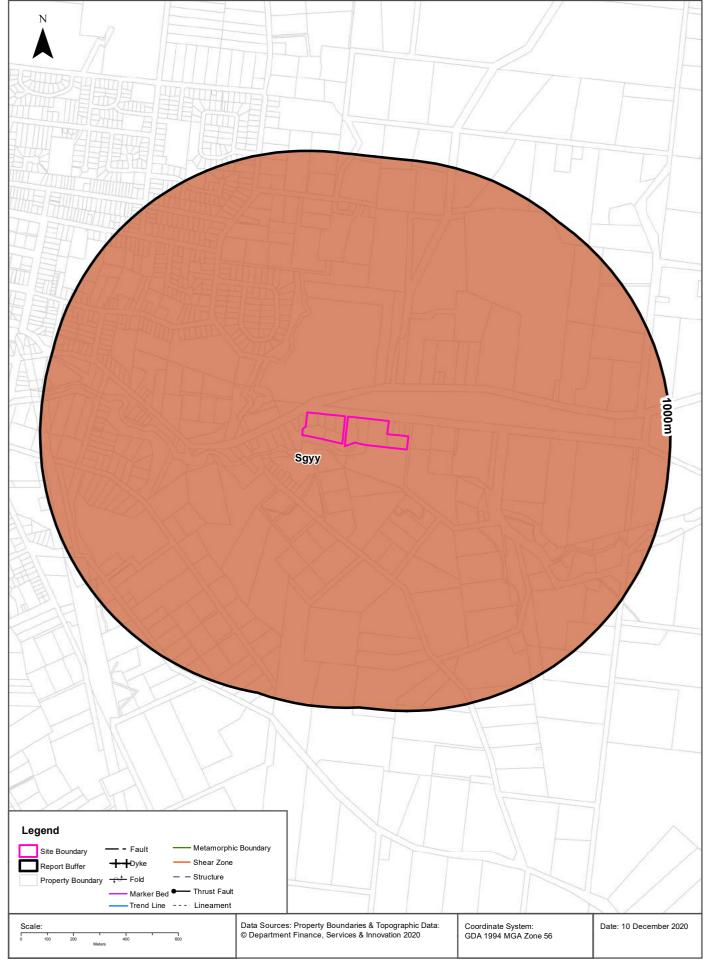
Groundwater No	Drillers Log	Distance	Direction
GW700197	0.00m-0.40m TOPSOIL 0.40m-2.00m CLAY 2.00m-10.00m DECOMPOSED GRANITE 10.00m-20.00m GRANITE 20.00m-20.50m QUARTZ GRANITE 20.50m-33.30m GRANITE	309m	South East
GW700075	0.00m-8.53m DECOMPOSED GRANITE 8.53m-57.91m GRANITE	317m	West
GW006898	0.00m-4.57m Soil 4.57m-24.38m Granite 24.38m-54.86m Granite Water Supply	366m	North East
GW008646	0.00m-6.10m Soil 6.10m-24.38m Granite 24.38m-55.02m Granite Water Supply 55.02m-55.47m Driller	407m	South
GW703812	0.00m-0.50m topsoil 0.50m-8.50m clay brown 8.50m-27.00m granite weathered 27.00m-138.00m granite black and white	505m	South East
GW030591	0.00m-1.22m Topsoil 1.22m-3.05m Granite Weathered 3.05m-73.15m Granite Water Supply	563m	West
GW055682	0.00m-0.65m Soil 0.65m-2.43m Clay 2.43m-7.62m Granite Decomposed 7.62m-38.40m Granite Water Supply	602m	South East
GW058184	0.00m-0.30m Topsoil 0.30m-5.80m Clay 5.80m-7.00m Granite Decomposed 7.00m-68.50m Granite Water Supply	611m	East
GW061481	0.00m-0.50m Topsoil 0.50m-3.00m Clay 3.00m-14.00m Granite Decomposed Water Supply	614m	South East
GW701584	0.00m-1.00m Topsoil 1.00m-10.00m Decomposed Granite 10.00m-113.00m Fresh Granite	661m	South East
GW008822	0.00m-4.88m Soil 4.88m-35.66m Granite Water Supply	728m	South West
GW702681	0.00m-1.00m Topsoil 1.00m-6.50m Clay, grey 6.50m-21.00m Granite, weathered 21.00m-40.00m Granite, black & white	735m	North
GW701480	0.00m-0.50m Topsoil 0.50m-6.00m Clay 6.00m-21.00m Weathered Granite 21.00m-57.00m Granite, blue	736m	North
GW061101	0.00m-0.30m Topsoil 0.30m-2.10m Clay 2.10m-19.20m Granite Decomposed Water Bearing 19.20m-45.70m Granite Water Bearing	771m	South
GW701019	0.00m-0.50m Topsoil 0.50m-3.00m Clay 3.00m-9.00m Granite, decomposed 9.00m-132.00m Granite	780m	East

Groundwater No	Drillers Log	Distance	Direction
GW025097	0.00m-0.30m Topsoil 0.30m-5.49m Clay Sandy 5.49m-9.14m Clay 9.14m-14.63m Granite Decomposed Water Supply 14.63m-30.78m Granite Grey	797m	South East
GW057990	0.00m-0.50m Soil 0.50m-2.00m Clay 2.00m-5.00m Clay Sandy 5.00m-10.00m Granite Decomposed 10.00m-17.00m Clay 17.00m-21.00m Sand Coarse Water Bearing 21.00m-24.00m Granite Grey Water Bearing	856m	North
GW025374	0.00m-3.05m Clay 3.05m-6.10m Clay White 6.10m-12.19m Gravel 12.19m-15.24m Granite 15.24m-16.76m Gravel 16.76m-18.90m Granite 18.90m-20.12m Gravel 20.12m-91.44m Granite	882m	South
GW701223	0.00m-9.00m FILL 9.00m-14.00m GRANITE, SOFT 14.00m-90.00m GRANTIE, HARD	918m	West
GW704841	0.00m-0.60m Fill, Sandy Clay Fill; red & brown, soft to firm, some gravel <10mm, moist 0.60m-1.80m Clay, Sandy; red & brown, brown mottled, ironstone, firm, moist 1.80m-7.00m Clay, Gravelly; orange & brown, decomposed granite, red & brown, clay inclusions, moist 7.00m-11.00m Clay, Gravelly; granite, becoming more grey in colour, hardening slightly 11.00m-19.00m (Unknown); no Page 2 of consultants log was provided	929m	North West
GW704839	0.00m-0.50m Sand, Silty; grey & brown, fine grained, organic matter, rootlets, minor gravels, moist to wet 0.50m-1.50m Sand, Clayey; orange & brown, brown mottled, firm to stiff, minor gravels, moist 1.50m-5.20m Clay, Gravelly; orange & brown, decomposed granite & clay, sub-angular granite gravels to 25mm, moist 5.20m-8.00m Clay/Gravel; grading to clayey gravel (decomposed granite), some gravels <20mm, typically less than 5mm 8.00m-13.50m Clay/Gravel; increasingly grey, hardening slightly	951m	North West
GW704840	0.00m-0.40m Sand, Silty; grey & brown topsoil, fine grained, rootlets, gravels 0.40m-1.50m Sand, Clayey; orange & brown, brown mottled, firm, some ironstone gravels 1.50m-4.00m Clay, Gravelly; orange & brown, decomposed granite & clay, moist 4.00m-8.00m Clay, Gravelly; orange & brown, increasing gravel content 8.00m-9.00m Clay, Gravelly; increasingly grey in colour 9.00m-11.00m Clay, Gravelly; weathered/decomposed, light grey to grey, granite with clay inclusions, moist 11.00m-15.30m (Unknown); no page 2 of consultants log provided	953m	North West
GW025099	0.00m-4.27m Clay Grey Sticky 4.27m-16.46m Granite Decomposed 16.46m-20.42m Wash Gravel Water Supply 20.42m-28.65m Granite 28.65m-29.57m Quartz Granitic Water Supply 29.57m-30.48m Granite	1027m	South East
GW047769	0.00m-0.30m Topsoil 0.30m-1.50m Clay 1.50m-20.70m Granite Decomposed 20.70m-45.70m Granite Water Supply	1035m	North East
GW070358	0.00m-0.50m TOPSOIL 0.50m-20.00m DECOMPOSED GRANITE 20.00m-24.00m SAND 24.00m-49.00m GRANITE 49.00m-52.00m DECOMPOSED GRANITE & QUARTZ 52.00m-60.60m GRANITE	1078m	North West
GW053063	0.00m-0.30m Topsoil 0.30m-4.60m Clay 4.60m-35.10m Granite Decomposed Clay Bands 35.10m-39.60m Granite Decomposed Water Supply 39.60m-53.30m Granite	1087m	South East
GW704842	0.00m-0.50m Fill; orange & brown, silt, sand, gravels, moist 0.50m-1.80m Clay, Sandy; orange & brown, brown mottled, firm, ironstone, gravels <5mm, moist 1.80m-8.00m Clay/Gravel; orange & brown, gravel <5mm with clay inclusions (decomposed granite), moist 8.00m-9.00m Clay, Gravelly; driller indicated granite hardening around 8m 9.00m-11.00m Clay, Gravelly; hit hard granite @ 9m, anuger refusal @ 9.4m, switched to hammer 11.00m-20.40m (Unknown); no Page 2 of consultants log was provided	1104m	North West
GW702371	0.00m-1.00m Topsoil 1.00m-12.00m Clay 12.00m-30.00m Weathered Granite 30.00m-100.00m Granite, black & white	1126m	North

Groundwater No	Drillers Log	Distance	Direction
GW700532	0.00m-3.00m Light/Medium clay - orange/brown. 3.00m-9.00m Light/Medium Clay - pale light brown	1159m	West
GW700531	0.00m-0.50m Topsoil - dark brown, organic matter present 0.50m-3.00m Medium clay, brown, coarse sand present 10% 3.00m-4.00m Medium Sandy Clay, dark brown, angular very coarse sand present 50% 4.00m-8.00m Medium Clay - light brown, angular sand present, sorted with depth. Fine-sand 0.5mm present at 4.5 - 5.5m 8.00m-10.00m Sandy Clay - light brown, coarse angular sand 30%, some fine sand grains present	1172m	North West
GW025195	0.00m-0.30m Topsoil 0.30m-1.52m Clay Yellow 1.52m-7.92m Clay Sandy 7.92m-15.24m Granite Decomposed Water Supply 15.24m-60.96m Granite	1181m	East
GW025086	0.00m-2.13m Clay Yellow 2.13m-6.71m Clay Sandy 6.71m-11.28m Granite Decomposed 11.28m-13.72m Clay Coarse Gravel Water Supply 13.72m-14.94m Granite Decomposed Water Supply 14.94m-20.73m Granite Grey 20.73m-21.64m Granite Decomposed 21.64m-23.47m Granite Grey	1206m	North East
GW092305	0.00m-1.00m Dry sandy loam. Slightly cohesive when wet. 1.00m-2.00m Dry sandy loam. Slightly cohesive when wet. Iron nodules to 2 cm. 2.00m-5.00m Moist coarse sandy clay. Cohesive to 1.5 cm ribbon. sand grains to 5 mm. 5.00m-6.00m Very moist coarse sandy clay. cohesive to 1.5 cm ribbon. Sand grains to 4 mm.	1213m	South West
GW025180	0.00m-0.30m Topsoil 0.30m-3.66m Clay 3.66m-11.58m Clay Sandy 11.58m-18.90m Clay Granitic 18.90m-21.34m Granite Decomposed Water Supply 21.34m-24.38m Quartz Granitic Water Supply	1231m	North
GW704200	0.00m-1.00m topsoil 1.00m-3.00m clay, brown 3.00m-31.00m granite, decomposed	1262m	North West
GW025194	0.00m-0.61m Topsoil Red 0.61m-2.13m Clay Sandy 2.13m-3.05m Clay 3.05m-6.10m Clay Sandy 6.10m-15.24m Granite Decomposed 15.24m-18.90m Granite Wash 18.90m-33.22m Granite Decomposed Water Supply 33.22m-53.34m Granite	1283m	North
GW700167	0.00m-0.50m TOPSOIL 0.50m-1.50m RED CLAY 1.50m-17.00m DECOMPOSED GRANITE 17.00m-75.00m GREY GRANITE	1283m	East
GW703589	0.00m-0.50m Topsoil 0.50m-3.00m Clay 3.00m-19.00m Granite, decomposed 19.00m-90.90m Granite	1292m	South East
GW056234	0.00m-0.60m Topsoil 0.60m-4.20m Clay 4.20m-23.40m Granite Decomposed Water Supply	1312m	North West
GW047514	0.00m-0.30m Topsoil 0.30m-4.60m Clay 4.60m-10.70m Granite Decomposed 10.70m-61.00m Granite Water Supply	1318m	South West
GW048063	0.00m-0.30m Topsoil 0.30m-9.80m Clay 9.80m-18.90m Granite Decomposed Water Supply 18.90m-20.40m Granite	1322m	North West
GW703588	0.00m-0.50m Topsoil 0.50m-1.00m Granite, decomposed 1.00m-4.00m Clay 4.00m-15.00m Granite, decomposed 15.00m-60.00m Granite	1322m	South East
GW700534	0.00m-0.50m Topsoil - brown, organic matter present 0.50m-1.50m Light clay-light brown. Angular sand grains evident and visible, very coarse 1.50m-14.00m Sandy clay-orange/brown. Coarse angular sand 40%. Some moisture.	1324m	North West

Groundwater No	Drillers Log	Distance	Direction
GW092303	0.00m-1.00m Dry coarse sandy loam. Slightly cohesive when wet. Sand grains to 3 mm. Mica scattered through. 1.00m-2.00m Dry coarse sandy loam. Slightly cohesive when wet. Sand grains to 3 mm. Mica scattered through. 2.00m-3.00m Dry coarse sandy loam. Slightly cohesive when wet. Sand grains to 4 mm. Lots of mica. 3.00m-6.00m Dry coarse sandy loam, slightly cohesive when wet. Sand grains to 4 mm. Lots of mica. Slightly moist at bottom.	1360m	North West
GW092313	0.00m-1.00m Dry sandy loam. Slightly cohesive when wet. 1.00m-2.00m Dry sandy clay loam. Cohesive to 0.5 cm. 2.00m-5.00m Dry sandy clay. Cohesive to 1 cm. Scattered mica. 5.00m-6.00m Moist sandy clay. Cohesive to 1.5 cm. Sand grains to 2 mm. Scattered mica. 6.00m-7.00m Moist sandy clay. Cohesive to 1.5 cm. Sand grains to 2 mm. Scattered mica. 7.00m-9.00m Moist sandy clay. Cohesive to 1.5 cm. Sand grains to 2 mm. Scattered mica.	1363m	West
GW704897	0.00m-0.20m Fill; Concrete 0.20m-0.40m Fill; clayey Sand, brown 0.40m-0.60m Sandy Clay; yellow brown & mica 0.60m-1.20m Sandy Clay; grey 1.20m-3.30m Sandy Clay; grey brown 3.30m-6.00m Sandy Clay; brown	1379m	West
GW704899	0.00m-0.20m Fill; Concrete 0.20m-0.50m Fill; Clayey Sand, brown 0.50m-1.20m Sandy Clay 1.20m-2.00m Clay, Gravelly; brown & mica 2.00m-6.00m Gravel, Clayey; weathered granite	1382m	West
GW704898	0.00m-0.20m Fill; Concrete 0.20m-0.60m Fill; Clayey Sand, brown 0.60m-3.30m Sandy Clay; grey brown & mica 3.30m-6.00m Sandy Clay; brown 6.00m-7.50m Silty Clay; brown	1393m	West
GW700821	0.00m-0.50m Topsoil 0.50m-4.00m Clay 4.00m-12.00m Granite, decomposed 12.00m-15.00m Clay 15.00m-16.40m Granite, decomposed and quartz 16.40m-22.60m Granite, grey	1428m	West
GW700039	0.00m-0.50m TOPSOIL 0.50m-4.00m CLAY 4.00m-21.50m DECOMPOSED GRANITE	1447m	North West
GW054942	0.00m-9.14m Granite Decomposed Water Supply 9.14m-15.84m Granite Water Supply	1479m	East
GW701809	0.00m-0.60m Topsoil 0.60m-24.00m Sandy clay 24.00m-30.00m Weathered granite 30.00m-72.00m Granite	1484m	North East
GW700037	0.00m-0.50m TOPSOIL 0.50m-4.00m CLAY 4.00m-24.20m DECOMPOSED GRANITE	1485m	North West
GW092306	0.00m-1.00m Dry sand loam. Cohesive to 0.5 cm ribbon. 1.00m-2.00m Dry sandy clay loam. Cohesive to 1.0 cm ribbon. 2.00m-3.00m Dry coarse sandy loam. Cohesive to 0.5 cm ribbon. Sand grains through to 4 mm. 3.00m-4.00m Moist sandy clay. Cohesive to 1.5 cm ribbon. 4.00m-5.00m Moist coarse sandy clay. Cohesive to 1.5 cm ribbon. Sand grains to 4 mm. 5.00m-6.00m Very moist sandy clay. Cohesive to 2.0 cm ribbon. Sand grains to 2 mm.	1517m	West
GW049147	0.00m-0.30m Topsoil 0.30m-4.60m Clay 4.60m-15.20m Granite Decomposed Water Supply 15.20m-19.80m Granite	1519m	East
GW703190	0.00m-0.30m topsoil 0.30m-1.50m clay 1.50m-23.00m decomposedf granite 23.00m-30.00m granite	1540m	North West
GW056053	0.00m-3.50m Clay 3.50m-24.00m Granite Decomposed 24.00m-48.76m Granite	1541m	East
GW025192	0.00m-0.61m Topsoil 0.61m-2.74m Clay Yellow 2.74m-6.10m Clay Sandy 6.10m-9.14m Granite Decomposed 9.14m-76.20m Granite	1577m	North East

Groundwater No	Drillers Log	Distance	Direction
GW033388	0.00m-0.91m Topsoil 0.91m-14.02m Sand Claybound Water Supply 14.02m-31.09m Sand Coarse 31.09m-36.58m Granite	1589m	South West
GW027648	0.00m-1.22m Topsoil 1.22m-16.46m Clay Yellow 16.46m-18.29m Clay 18.29m-20.73m Water Supply 20.73m-27.43m Pug Red Clay Stiff 27.43m-39.62m Granite Sand 39.62m-48.77m Granite Yellow Decomposed Water Bearing	1619m	West
GW092307	0.00m-1.00m Dry coarse sandy loam. Slightly cohesive when wet. Sand grains to 4 mm. 1.00m-2.00m Dry sandy clay. Cohesive to 0.5 cm. 2.00m-3.00m Dry coarse sandy clay loam. Cohesive to 1.0 cm. Sand grains to 4 mm. 3.00m-4.00m Dry coarse sandy clay loam. Cohesive to 1.0 cm ribbon. Sand grains to 4 mm. 4.00m-5.00m Moist coarse sandy clay. Cohesive to 1.5 cm ribbon. Coarse sand grains through to 1.0 cm rocks. 5.00m-6.00m Moist coarse sandy clay. Cohesive to 1.5 cm ribbon. Coarse sand grains to 6 mm. 6.00m-6.50m Moist coarse sandy clay. Cohesive to 1.5 cm ribbon, coarse sand grains to 6 mm.	1644m	West
GW700533	0.00m-1.00m Topsoil - dark brown, organic matter present 1.00m-2.50m Medium clay - brown, angular sand present - 20% 2.50m-11.00m Sandy Clay - light brown, sand angular and coarse	1663m	West
GW025252	0.00m-0.30m Sand Red 0.30m-0.91m Loam White 0.91m-4.57m Clay Red Sandy 4.57m-10.06m Clay Yellow 10.06m-21.64m Clay Granite 21.64m-30.48m Granite Decomposed Water Supply 30.48m-85.34m Granite Water Supply	1667m	North West
GW700530	0.00m-0.50m Topsoil - dark brown, organic matter present. 0.50m-1.50m Sandy Clay - dark brown/red, fine angular sand 1.50m-5.50m Medium Sandy Clay - light brow/yellow, angular sand more coarse than above interval. 5.50m-15.50m Clayey Sand - khaki, angular coarse sand present >50%. Major inflow of water at 13.5-14.0m through to 15.0m 15.50m-16.00m Medium Sandy Clay - light brown/khaki. Coarse angular sand present	1678m	North West
GW700055	0.00m-0.50m TOPSOIL 0.50m-4.50m CLAY 4.50m-13.00m SHALE ROCK 13.00m-13.50m BROWN GRANITE & QUARTZ 13.50m-19.00m GRANITE 19.00m-20.00m BROWN GRANITE & QUARTZ 20.00m-20.50m GREY GRANITE 20.50m-21.60m BROWN GRANITE & QUARTZ 21.60m-24.70m GREY GRANITE	1689m	East
GW704753	0.00m-1.00m topsoil 1.00m-43.00m granite, decomposed 43.00m-120.00m granite, fresh, grey	1690m	South
GW092304	0.00m-1.00m Dry sandy loam. Slightly cohesive when wet. 1.00m-2.00m Slightly moist coarse sandy clay. Cohesive to 1.5 cm ribbon. Sand grains to 3 mm. 2.00m-4.00m Moist coarse sandy clay. Cohesive to 1.5 cm ribbon. Sand grains to 4 mm. 4.00m-5.00m Moist to very moist coarse sandy clay. Cohesive to 1.5 cm ribbon. Sand grains to 4 mm. 5.00m-6.00m Very moist coarse sandy clay. Cohesive to 2.0 cm ribbon. Sand grains to 3 mm (less larger than last). More plasticity	1694m	North West
GW702026	0.00m-12.00m Clay 12.00m-26.00m Decomposed Granite 26.00m-92.00m Granite	1716m	South West
GW035626	0.00m-0.30m Topsoil 0.30m-5.18m Clay 5.18m-5.49m Quartz 5.49m-25.30m Granite Weathered 25.30m-121.92m Granite Black Water Supply	1733m	South
GW701132	0.00m-0.30m Topsoil 0.30m-2.70m Sand 2.70m-8.20m Clay 8.20m-14.00m Decomposed Granite 14.00m-45.70m Granite 45.70m-72.00m Rock, 'Spotted Dog'	1793m	North East


Groundwater No	Drillers Log	Distance	Direction
GW057589	0.00m-0.50m Topsoil 0.50m-5.50m Granite Decomposed 5.50m-22.50m Sandstone 22.50m-23.80m Granite Broken Water Supply 23.80m-33.00m Granite Broken 33.00m-60.00m Granite Grey	1820m	North West
GW704045	0.00m-1.00m topsoil 1.00m-39.00m granite, decomposed 39.00m-42.00m granite, grey	1825m	North East
GW025193	0.00m-0.30m Topsoil 0.30m-14.33m Clay Sandy 14.33m-19.51m Gravel Medium-coarse Water Supply 19.51m-27.43m Granite Decomposed 27.43m-30.48m Granite	1828m	North East
GW700602	0.00m-0.40m Topsoil 0.40m-2.00m Clay, red 2.00m-8.00m Granite, decomposed 8.00m-36.00m Granite, grey 36.00m-36.50m Granite, broken brown 36.50m-63.00m Granite, grey black	1843m	North
GW702934	0.00m-1.50m Fill, silty clay, black moist, soft 1.50m-3.00m Clay, black, damp, stiff, slight hydrocarbon odour 3.00m-4.00m Clay, as above, grey 4.00m-5.00m Clay, as above, no hydrocarbon odour 5.00m-6.00m Clay, as above, red/brown	1850m	West
GW702935	0.00m-0.75m Fill, silt, black, loose, moist 0.75m-6.00m Clay, brown, moist, no hydrocarbon odour	1853m	West
GW702939	0.00m-1.00m Fill, black ash, silt & red bricks, moist 1.00m-2.00m Clay, red brown, dry, no hydrocarbon odour 2.00m-4.00m Clya, as above, light brown 4.00m-5.00m Clay, as above, moist 5.00m-8.00m Clay, as above, grey	1855m	West
GW702941	0.00m-1.00m Fill, grey, clay, wet, soft, no hydrocarbon odour 1.00m-2.00m Fill, sand, grey, coarse, loose, moist 2.00m-3.00m Clay, yellow, dry, firm, no hydrocarbon odour 3.00m-4.00m Clay, red, wet, firm, slight hydrocarbon odour 4.00m-5.00m Clay, as above, dry	1871m	West
GW702938	0.00m-1.00m Fill, silt, black, moist, loose, no hydrocarbon odour 1.00m-4.00m Clay, red, moist, soft, no hydrocarbon odour 4.00m-5.50m Clay, as above, grey 5.50m-6.00m Clay, as above, brown	1873m	West
GW092308	0.00m-1.00m Dry coarse sandy loam. Slightly cohesive when wet. Sand grains to 6 mm. 1.00m-3.00m Moist coarse sandy loam. Cohesive to 2.0 cm. Sand grains to 4 mm. 3.00m-4.00m Moist sandy clay. Cohesive to 2.0 cm. Sand grains to 2 mm. 4.00m-5.00m Moist sandy clay. Cohesive to 2.0 cm ribbon. Sand grains to 2 mm. 5.00m-6.00m Moist sandy clay. Cohesive to 2.0 cm ribbon. Sand grains to 3 mm.	1878m	West
GW701108	0.00m-2.50m Topsoil, and red clays 2.50m-20.00m Granite, weathered 20.00m-66.40m Granite, fresh	1887m	South West
GW051868	0.00m-0.30m Topsoil 0.30m-9.70m Clay 9.70m-27.40m Granite Decomposed 27.40m-34.20m Granite Soft 34.20m-76.20m Granite Water Supply	1888m	North
GW702940	0.00m-1.00m Fill, sandy clay, yellow, saturated, soft 1.00m-1.50m Fill, as above, dry 1.50m-3.70m Clay, brown, stiff 3.70m-5.00m Clay, grey, wet, soft, hydrocarbon odour 5.00m-5.50m Clay, as above, saturated, no hydrocarbon odour 5.50m-6.00m Clay, red, dry, very stiff, no hydrocarbon odour	1896m	West
GW702936	0.00m-1.50m Fill, silt, dry, brown, loose, no hydrocarbon odour 1.50m-4.00m Clay, red, dry, soft, no hydrocarbon odour 4.00m-6.00m Clay, as above, moist	1897m	West
GW702937	0.00m-1.00m Fill, silt, dry, grey, loose, no hydrocarbon odour 1.00m-2.00m Clay, red, moist, soft, no hydrocarbon odour 2.00m-3.00m Clay, red, dry, stiff, no hydrocarbon odour 3.00m-5.00m Clay, as above, moist 5.00m-6.00m Clay, as above, brown	1898m	West

Groundwater No	Drillers Log	Distance	Direction
GW092298	0.00m-1.00m Dry coarse sandy loam. Slightly cohesive when wet. Sand grains to 3mm. 1.00m-2.00m Moist coarse sandy clay loam. Cohesive to 0.5 cm ribbon. Coarse sand grains right through to rocks to 3 cm. 2.00m-3.00m Very moist coarse sandy clay. Cohesive to 1 cm ribbon. Rocks to 3 cm. 3.00m-4.00m Wet coarse sandy clay. Cohesive to 0.5 cm. Sand grains to 3mm.	1929m	North West
GW702299	0.00m-1.00m Topsoil 1.00m-30.00m Weathered Granite 30.00m-126.00m Granite	1937m	East
GW034188	0.00m-0.30m Topsoil 0.30m-4.57m Clay 4.57m-25.30m Granite Decomposed 25.30m-99.06m Granite Porphyry Water Supply	1958m	South
GW700169	0.00m-17.00m DECOMPOSED GRANITE 17.00m-38.00m GRANITE	1965m	North West
GW051091	0.00m-0.30m Topsoil 0.30m-4.57m Clay Coloured 4.57m-10.36m Granite Decomposed 10.36m-18.90m Granite 18.90m-20.42m Granite Decomposed 20.42m-53.34m Granite Orange	1981m	East
GW025242	0.00m-0.91m Soil Red Sandy 0.91m-2.13m Clay Yellow 2.13m-6.10m Clay Grey 6.10m-9.75m Clay 9.75m-29.26m Granite Decomposed Water Supply 29.26m-60.96m Granite Water Supply	1991m	North

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:250,000

Geology

2-20 Telegraph Road, Young, NSW 2594

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Sgyy	Granodiorite, often porphyritic in quartz, plagioclase and more rarely in K-feldspar, biotite	Young Granodiorite	Young Suite		Palaeozoic			1:250,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Sgyy	Granodiorite, often porphyritic in quartz, plagioclase and more rarely in K-feldspar, biotite	Young Granodiorite	Young Suite		Palaeozoic			1:250,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:250,000

What are the Geological Structures within the dataset buffer?

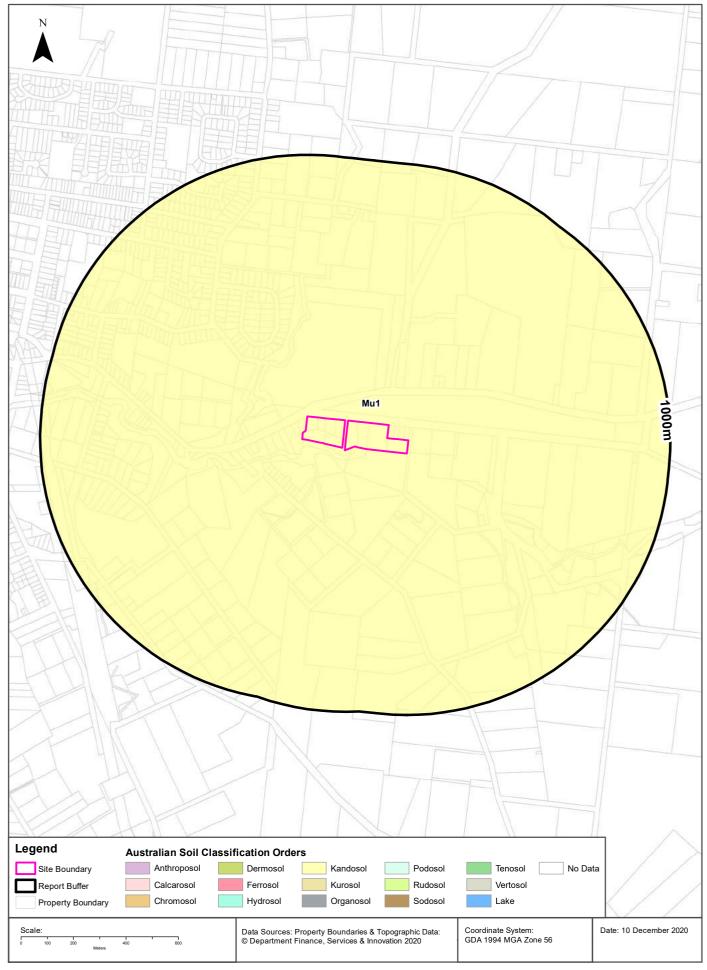
Feature	Name	Description	Map Sheet	Dataset
No features				1:250,000

Geological Data Source : NSW Department of Industry, Resources & Energy © State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

2-20 Telegraph Road, Young, NSW 2594

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

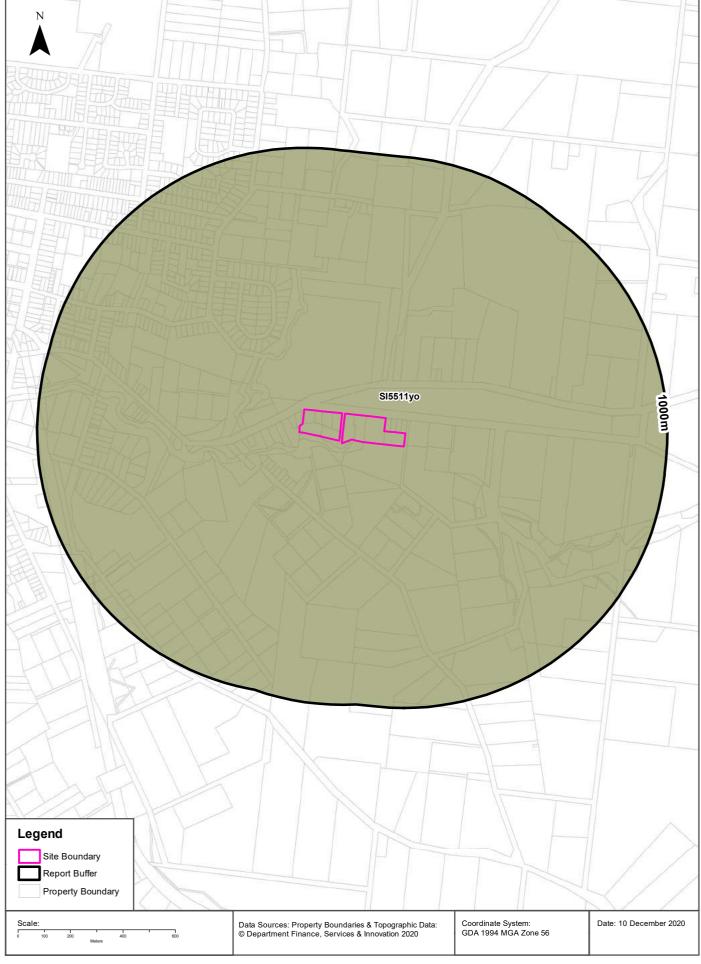
Atlas of Australian Soils

Soils

2-20 Telegraph Road, Young, NSW 2594

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
Mu1	Kandosol	Undulating to rolling country with some rounded slopes, broken by ridges and knolls dotted with tors: chief soils are neutral leached red earths (Gn2.15) and hard neutral red soils (Dr2.22) and (Dr2.62), generally as follows: (i) undulating to rolling areas of (Gn2.15) and occasionally (Gn2.16), with (Gn2.25) and (Dy3.42) on mid and lower slopes and (Dy3.43) in valleysironstone gravels are present in some areas of the last three soils; (ii) rolling areas of (Dr2.22), (Dr2.42), (Dy3.22), and (Dy3.42); and (iii) ridges and knolls of (Dr2.22), (Dr2.62), and possibly other (D) soils with some areas of siliceous sands (Uc1.2) and tors. Soil dominance varies locally throughout the unit between (i), (ii), and (iii). Data are limited.	0m

Atlas of Australian Soils Data Source: CSIRO

 $\label{lem:commons} \textbf{Creative Commons 4.0 @ Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en} \\$

Soil Landscapes of Central and Eastern NSW

Soils

2-20 Telegraph Road, Young, NSW 2594

Soil Landscapes of Central and Eastern NSW

What are the on-site Soil Landscapes?

Soil Code	Name
<u>SI5511yo</u>	Young

What are the Soil Landscapes within the dataset buffer?

Soil Code	Name
<u>SI5511yo</u>	Young

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

2-20 Telegraph Road, Young, NSW 2594

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

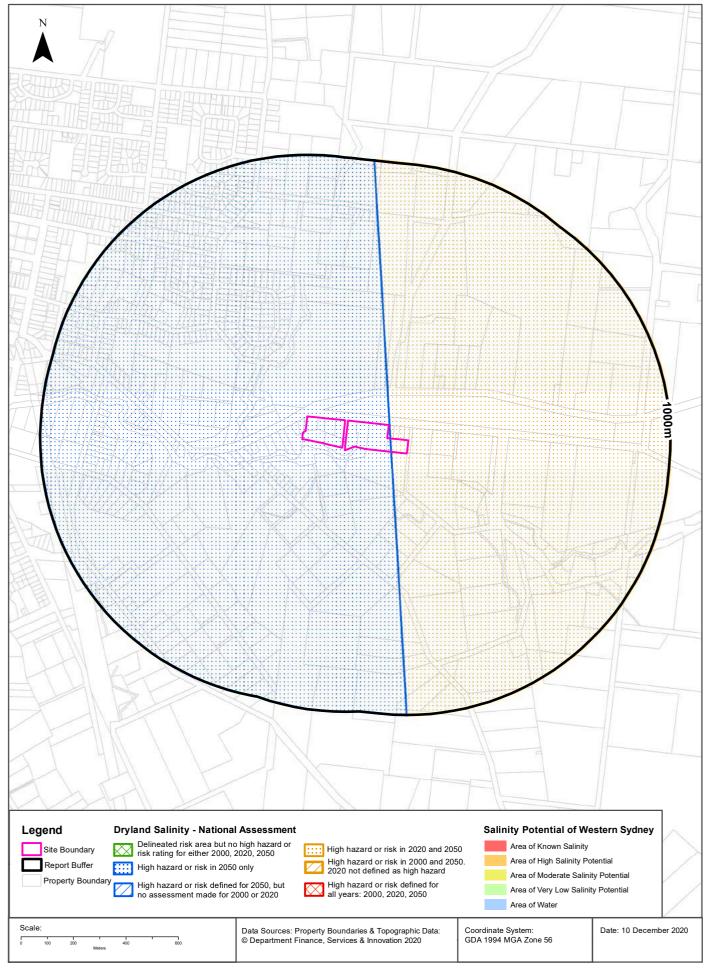
NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

2-20 Telegraph Road, Young, NSW 2594

Atlas of Australian Acid Sulfate Soils


Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Dryland Salinity

2-20 Telegraph Road, Young, NSW 2594

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

Yes

Is there Dryland Salinity - National Assessment data within the dataset buffer?

Yes

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
-	-	High hazard or risk	0m	Onsite
-	High hazard or risk	High hazard or risk	0m	Onsite

Dryland Salinity Data Source: National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

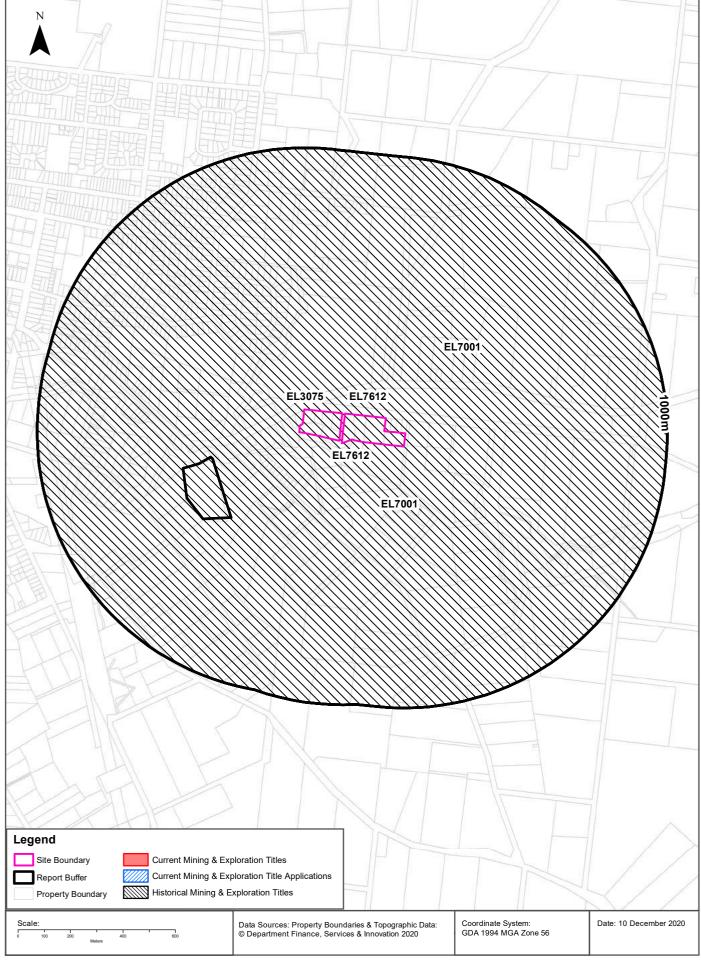
Feature Id	Classification	Description	Distance	Direction
N/A	Outside Data Coverage			

Dryland Salinity Potential of Western Sydney Data Source: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining

2-20 Telegraph Road, Young, NSW 2594

Mining Subsidence Districts


Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

2-20 Telegraph Road, Young, NSW 2594

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist (m)	Dir'
N/A	No Records in Buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist (m)	Dir'
N/A	No Records in Buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

2-20 Telegraph Road, Young, NSW 2594

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

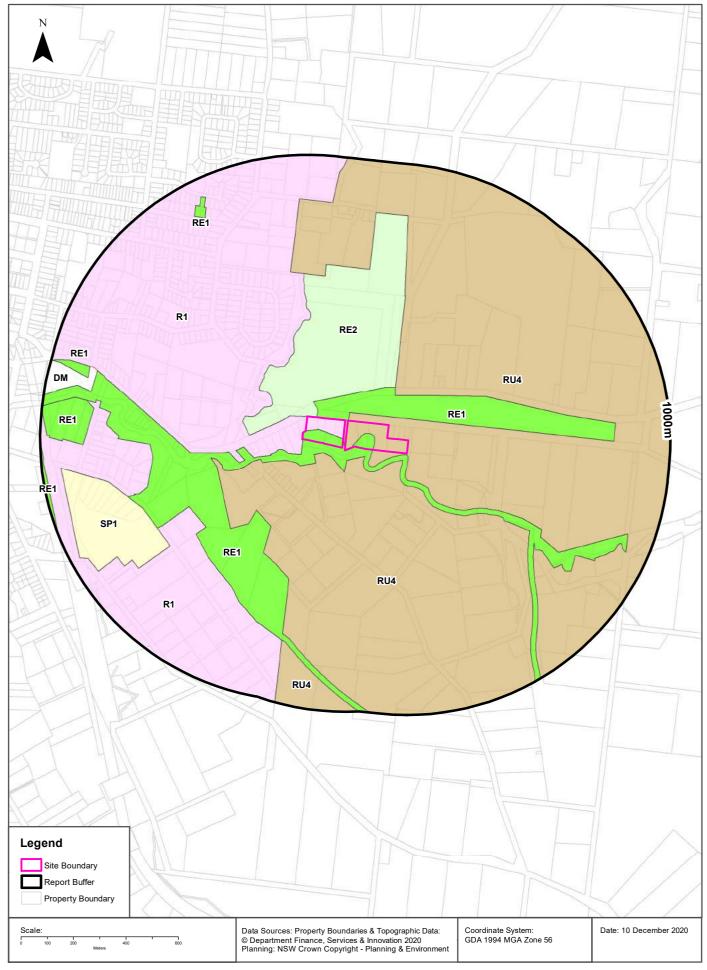
Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist (m)	Dir'
EL3075	NORGOLD LIMITED	01 Feb 1988	01 Dec 1989	MINERALS	Au	0m	Onsite
EL7001	TARONGA MINES LIMITED			MINERALS		0m	Onsite
EL7001	TARONGA MINES LIMITED	07 Jan 2008	07 Jan 2010	MINERALS		0m	Onsite
EL7612	SLADE, John			MINERALS		0m	Onsite
EL7612	SLADE, John	31 Aug 2010	31 Aug 2014	MINERALS	Au	0m	Onsite

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

2-20 Telegraph Road, Young, NSW 2594

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

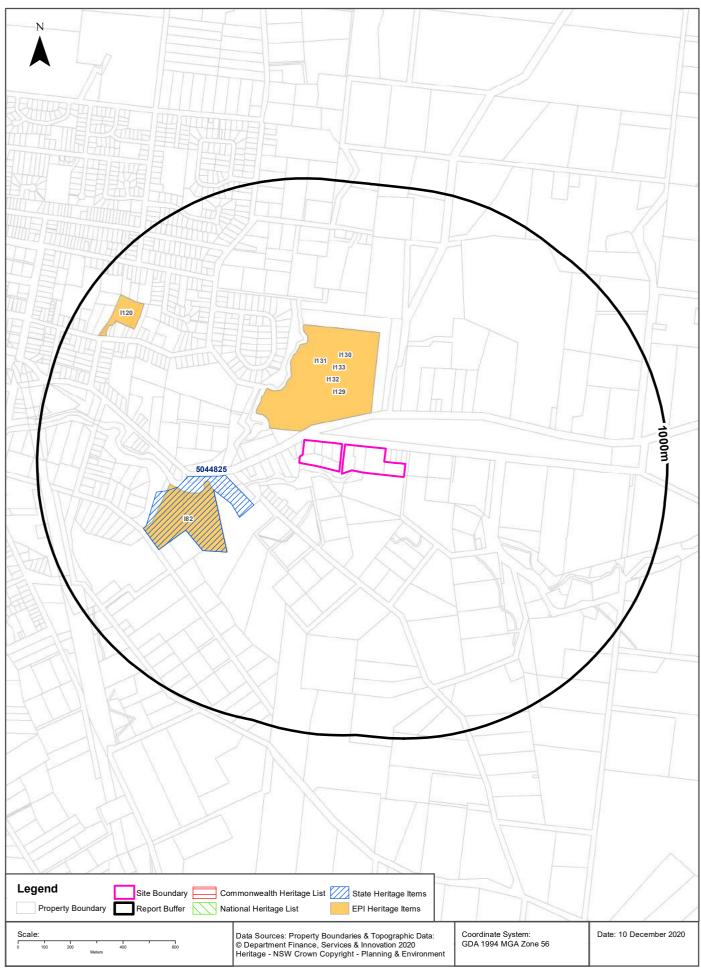
State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones 2-20 Telegraph Road, Young, NSW 2594

Environmental Planning Instrument

2-20 Telegraph Road, Young, NSW 2594

Land Zoning


What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RU4	Primary Production Small Lots		Young Local Environmental Plan 2010	12/07/2013	12/07/2013	27/03/2015	Amendment No 6	0m	Onsite
RE1	Public Recreation		Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015		0m	Onsite
R1	General Residential		Young Local		0m	Onsite			
RE2	Private Recreation		Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015		0m	North
R1	General Residential		Young Local Environmental Plan 2010	30/11/2012	08/03/2013	08/03/2013	Amendment No 5	499m	South West
SP1	Special Activities	Waste and Resource Management Facility	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015		650m	West
RE1	Public Recreation		Young Local Environmental Plan 2010	27/03/2015	27/03/2015	27/03/2015	Amendment No 7	804m	West
DM	Deferred Matter		Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015		820m	West
RE1	Public Recreation		Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015		847m	West
RE1	Public Recreation		Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015		854m	North West

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

2-20 Telegraph Road, Young, NSW 2594

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

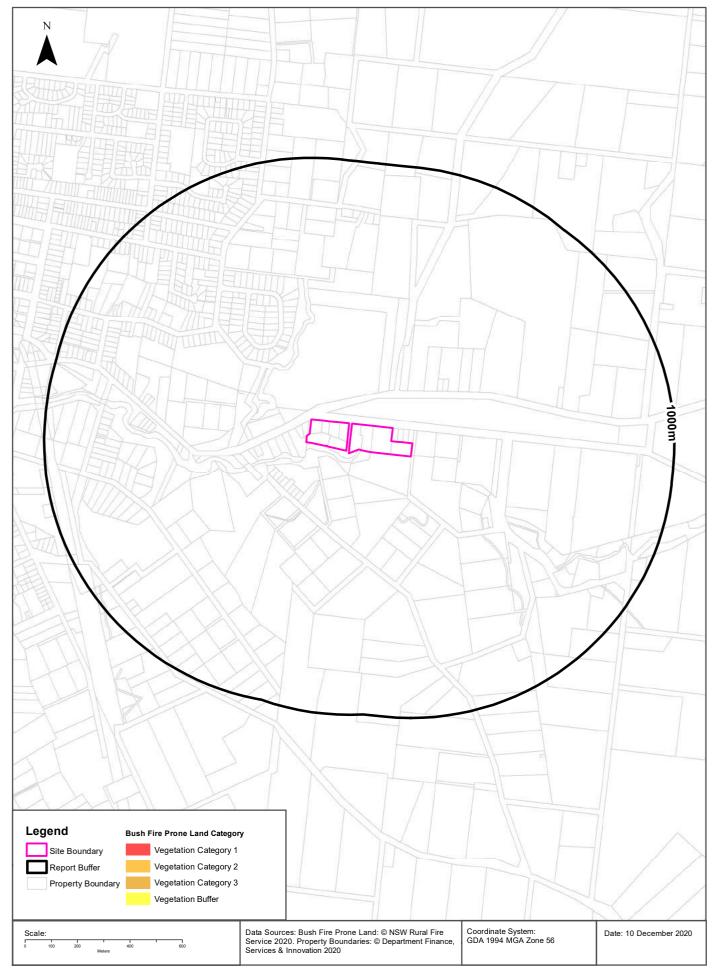
State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Io	d Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
50448	25 Blackguard Gully	Whiteman Avenue, Young	Young	13/03/2009	01775	2182	237m	West

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage


What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
l129	Young Showground Art Hall	Item - General	Local	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	36m	North
I130	Young Showground Grandstand	Item - General	Local	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	36m	North
l131	Young Showground Main Pavillion	Item - General	Local	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	36m	North

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
I132	Young Showground Sheep Pavillion & Cattle Shed	Item - General	Local	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	36m	North
I133	Young Showground Stan Lowe Pavillion	Item - General	Local	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	36m	North
182	Blackguard Gully gold diggings	Item - General	State	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	343m	West
l120	Verity Prunes	Item - General	Local	Young Local Environmental Plan 2010	02/08/2010	02/08/2010	27/03/2015	775m	North West

Natural Hazards - Bush Fire Prone Land

Natural Hazards

2-20 Telegraph Road, Young, NSW 2594

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

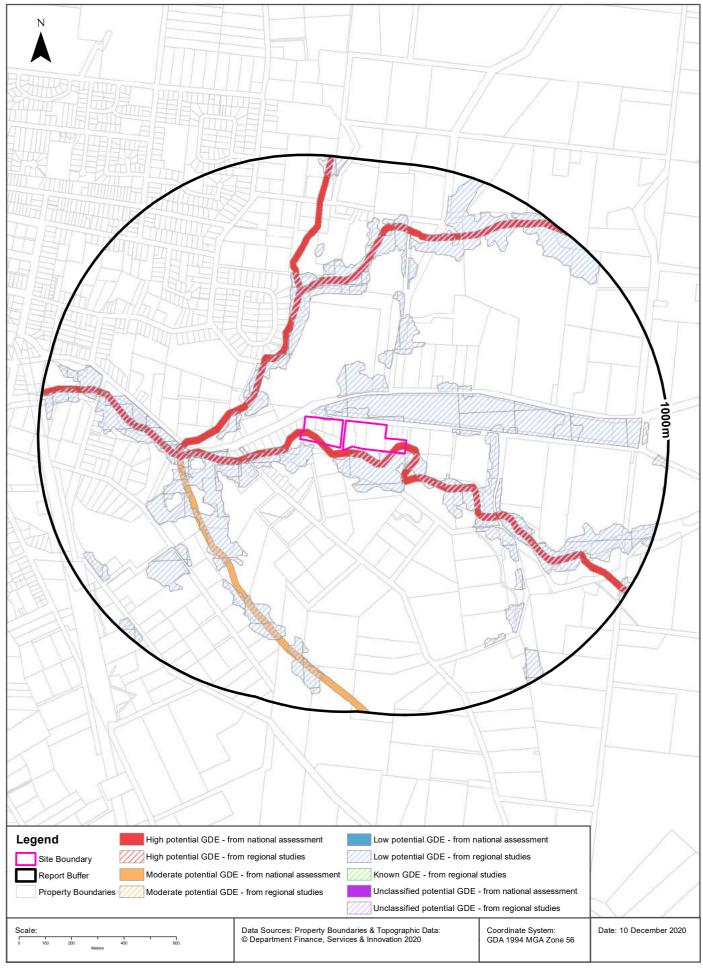
Bush Fire Prone Land Category	Distance	Direction
Vegetation Buffer	998m	South

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints

2-20 Telegraph Road, Young, NSW 2594

Ramsar Wetlands


What Ramsar Wetland areas exist within the dataset buffer?

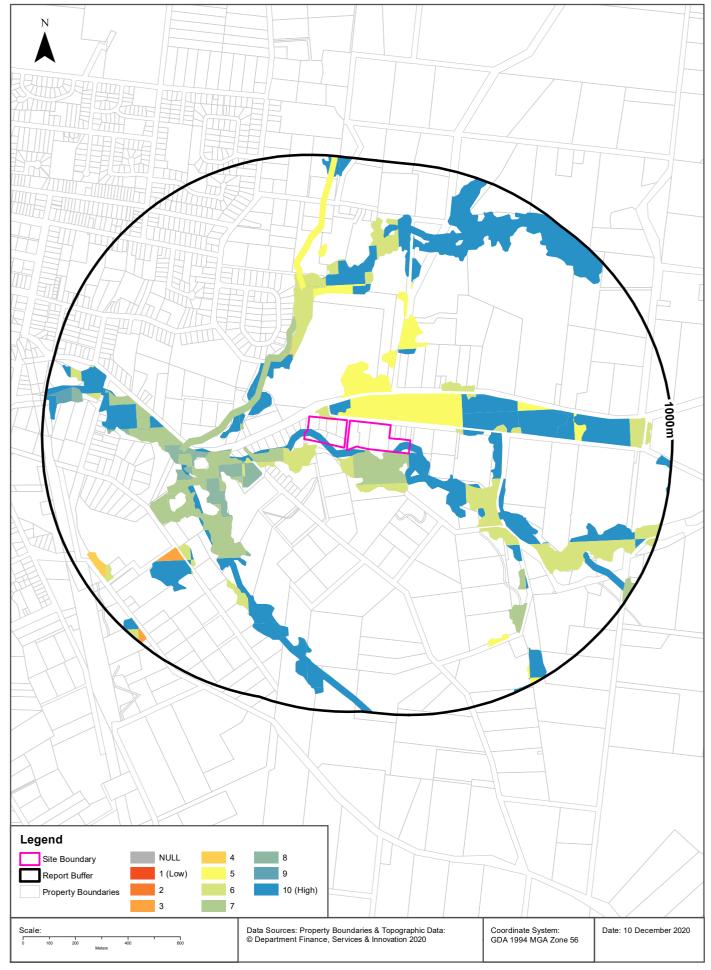
Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

2-20 Telegraph Road, Young, NSW 2594


Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Aquatic	High potential GDE - from national assessment	Tablelands stepping down to west and breaking into detached hills.	River		0m
Terrestrial	Low potential GDE - from regional studies	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m
Aquatic	Moderate potential GDE - from national assessment	Tablelands stepping down to west and breaking into detached hills.	River		454m

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

2-20 Telegraph Road, Young, NSW 2594

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Aquatic	10	Tablelands stepping down to west and breaking into detached hills.	River		0m
Terrestrial	5	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m
Terrestrial	6	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m
Terrestrial	7	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m
Terrestrial	10	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m
Aquatic	7	Tablelands stepping down to west and breaking into detached hills.	River		199m
Terrestrial	8	Tablelands stepping down to west and breaking into detached hills.	Vegetation		205m
Terrestrial	4	Tablelands stepping down to west and breaking into detached hills.	Vegetation		227m
Aquatic	5	Tablelands stepping down to west and breaking into detached hills.	River		473m
Terrestrial	3	Tablelands stepping down to west and breaking into detached hills.	Vegetation		640m
Terrestrial	9	Tablelands stepping down to west and breaking into detached hills.	Vegetation		895m

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

2-20 Telegraph Road, Young, NSW 2594

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus leucoxylon subsp. pruinosa	Yellow Gum	Vulnerable	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

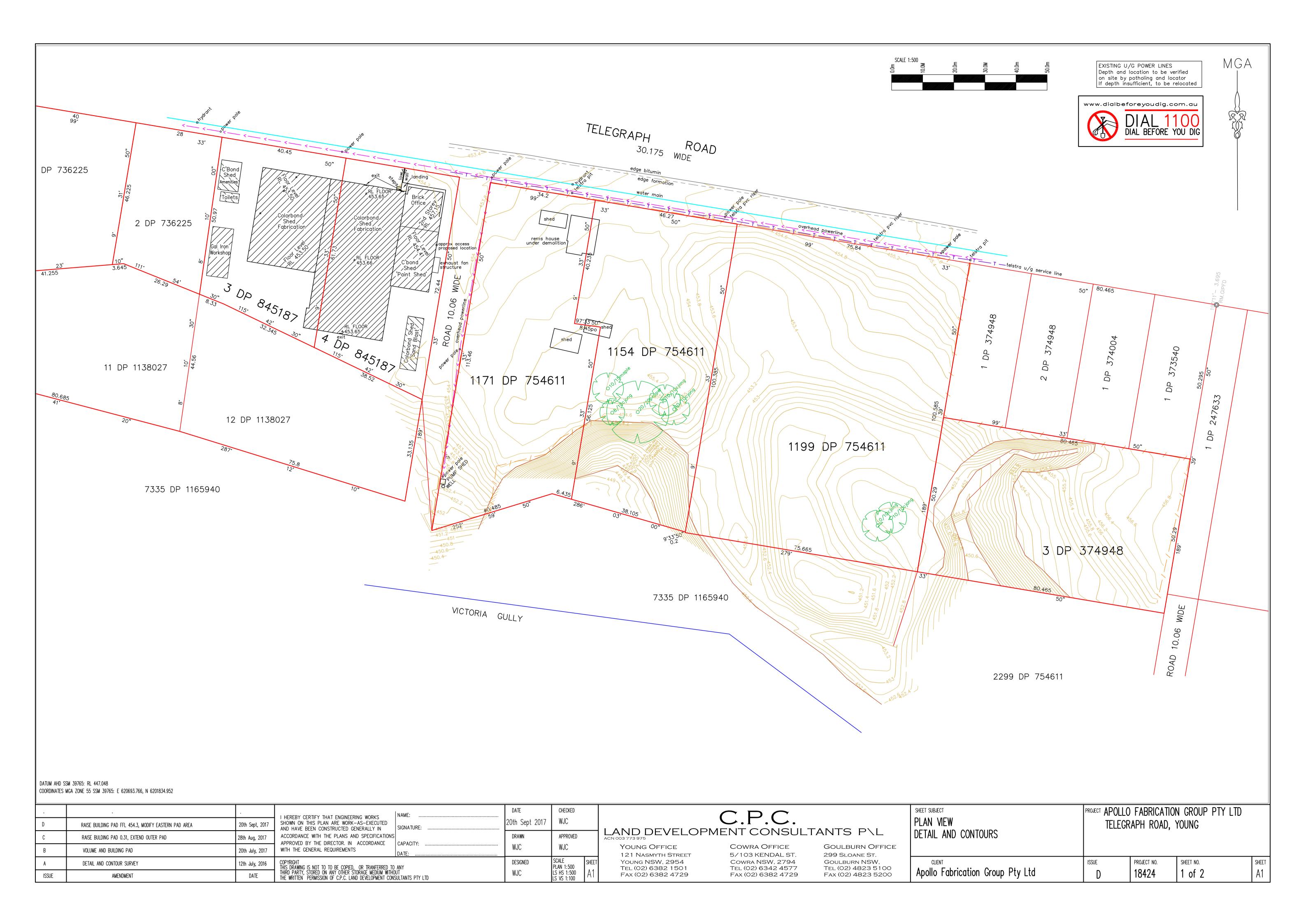
LC Code	Location Confidence
Premise match	Georeferenced to the site location / premise or part of site
General area or suburb match	Georeferenced with the confidence of the general/approximate area
Road match	Georeferenced to the road or rail
Road intersection	Georeferenced to the road intersection
Feature is a buffered point	Feature is a buffered point
Land adjacent to geocoded site	Land adjacent to Georeferenced Site
Network of features	Georeferenced to a network of features

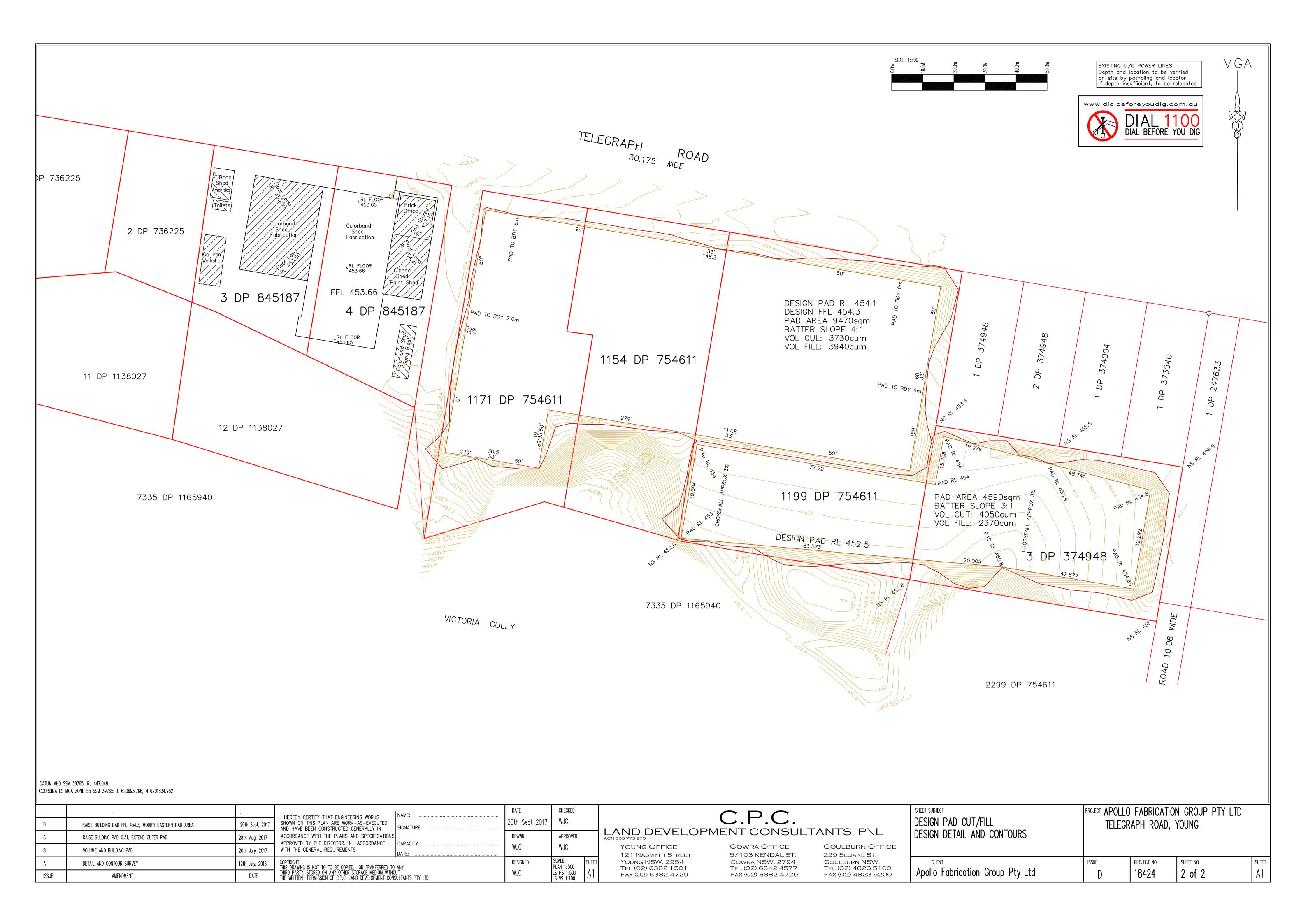
USE OF REPORT - APPLICABLE TERMS

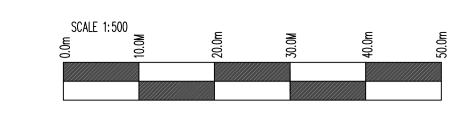
The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report:
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

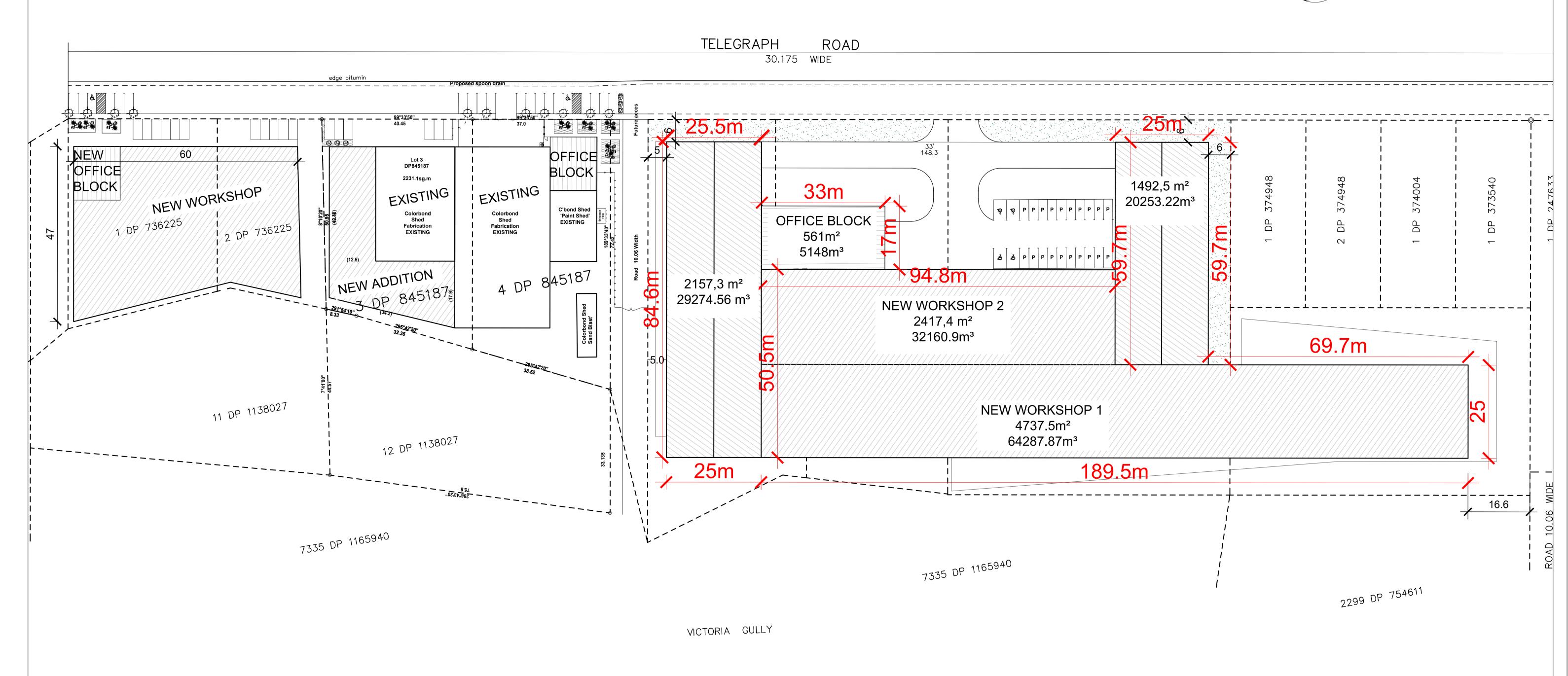
- of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms: and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,


irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.


12. These Terms are subject to New South Wales law.


Detailed Site Investigation Report Number: E24959.E02_Rev0 | 26 March 2021

Appendix K – Proposed Development Plan



EXISTING U/G POWER LINES
Depth and location to be verified
on site by potholing and locator
If depth insufficient, to be relocated

DATUM AHD SSM 39765: RL 447.048 COORDINATES MGA ZONE 55 SSM 39765: E 620693.766, N 6201834.952

DATE REASON FOR REVISION	
· ·	UNIQUE CAD EXPERIEN

APOLLO FABRICATION GROUP Pty Ltd	Job Number:			
	No. in Set:	Sheet No.:		
Apollo fabrication grop Pty Ltd		A 0.1	/	
Telegraph road, Young	Scale: 1:500	Revision No.:		
	Date: 28.9.2020	Revision Date.:		
PROPOSED SITE PLAN	Drawn: M.C.			A1